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Abstract

Many accounts of reward-based choice argue for distinct component processes that are serial and 

functionally localized. In this article, we argue for an alternative viewpoint, in which choices 

emerge from repeated computations that are distributed across many brain regions. We emphasize 

how several features of neuroanatomy may support the implementation of choice, including 

mutual inhibition in recurrent neural networks and the hierarchical organisation of timescales for 

information processing across the cortex. This account also suggests that certain correlates of 

value may be emergent rather than represented explicitly in the brain.

Neurobiologists have long been interested in developing mechanistic models to explain how 

we evaluate options and choose the best course of action1–3. Many of these models take a 

modular perspective. That is, they assume, even if only tacitly, that goal-directed choice can 

be subdivided into a set of discrete component processes, and that the neural implementation 

of these processes is both serial and localized4–7. The component processes typically 

include the evaluation of options, the comparison of option values in the absence of any 

other factors, the selection of an appropriate action plan, and the monitoring of the outcome 

of the choice. These component processes are generally assumed to correspond to discrete 

neural computations that are implemented in distinct neural structures.

An alternative perspective takes features of neural circuit anatomy as a starting point, and 

constructs circuit-based models that predict both behavioural and neural data while retaining 

biological plausibility at their core8–14. Recent research using such an approach emphasizes 

three overarching principles of reward-based choice. First, decisions may be formed in a 

distributed fashion across many brain regions that act in concert and perform similar 

computations. Second, the distributed networks implementing choices are highly recurrent in 

nature, which affects the kinds of computation that are performed. Third, these distributed 

and recurrent networks are organised into functional and temporal hierarchies.
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Centring behavioural models on neural circuit plausibility builds on several traditions. Its 

origins can be traced back to mid-century pioneers like Weiner, Hull, Hebb, and 

McCullough and Pitts15,16. These scholars took advantage of then-new discoveries about 

neurophysiology and computer science to propose neurally plausible computational theories. 

The next generation of scientists — including Grossberg, Hopfield, McClelland, Rumelhart 

and Hinton — developed these ideas to model entire neural systems. The key insight of this 

branch, from McCullough and Pitts to the present day, was that neuron-like units that 

performed biophysically plausible computations and were connected in simple ways could 

perform astonishingly rich computations17–20. Such systems do not have dedicated 

memory and processing subsystems, unlike other computing architectures. Memory and 

computation are instead interwoven in the system and distributed broadly throughout it17. 

This is directly relevant to choice models because evaluation depends critically on memory 

and comparison is a basic computation for choice.

These traditions continue to influence neuroscience to this day. Their influence on decision 

making has been expressed by computational neuroscientists such as Wang, Frank, O’Reilly, 

Rolls and Cisek, among others8–13. Recently, several studies have tested key empirical 

predictions from circuit-based accounts of decision-making. Moreover, these advances have 

coincided with a resurgence of interest in neural networks in machine learning and computer 

science21, and methodological breakthroughs in neuroanatomy22 and circuit 

manipulation23. These methods should allow for far more rigorous testing and refinement of 

circuit-level models in the near future. It is therefore particularly timely to consider the 

contribution that such models make to our understanding of reward-guided choice.

In this Opinion article, we first outline the key principles behind a distributed, hierarchical 

and recurrent account of reward-guided choice. We then discuss some empirical motivations 

for this account. We argue that the known and emerging neuroscience of simple economic 

choice is consistent with several important properties of circuit-based models.

The distributed, hierarchical, and recurrent approach differs qualitatively from modular 

explanations of reward-guided choice in that it is eliminative24. This means that the neural 

implementation of choice does not necessarily recapitulate the steps or modules often used 

to describe the overall process. Instead, choice algorithms may be thought of as emergent 

properties of network activity. This change in perspective leads to a different core set of 

research questions than the modular approach (BOX 1).

Properties of the framework

Distributed

A distributed decision is one in which separate elements perform subsidiary computations 

that, when combined, produce the eventual choice. Well-known examples include the actions 

of individual voters in a national election and the selection of hive sites by swarms of bees25 

(BOX 2). In each of these cases, individual elements process a small (and often noisy) 

fragment of the overall input, possibly including the outcomes of other agents, to make an 

overarching single decision in the aggregate.
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A neuron can be thought of as a small and informationally limited decision-maker26,27. It 

non-linearly transforms its dendritic inputs to its firing rate. However, this transformation of 

inputs to outputs does not have to be completed by a single neuron (or layer of neurons) to 

be useful. Neurons providing incremental change may instead contribute as part of a well-

organised distributed system that includes multiple brain regions. Any neuron whose activity 

influences the behaviour of the network can be thought of as participating in that behaviour. 

In a decision-making network, this means that individual neurons may not require a pure 

representation of decision parameters to contribute to the decision-making process28.

Distributed transformations within cortical circuits—Distributed decisions often 

involve a single simple computation repeated in each element on different inputs. One strong 

candidate for that computation in economic choice is competition through mutual inhibition. 

Mutual inhibition is a common motif that is found throughout the nervous system, and is 

often considered part of a basic repertoire of neural circuits29,30. Effective competition via 

mutual inhibition can be mediated in a biophysically realistic cortical circuit model by an 

appropriate choice of synaptic weights11,13 (FIG. 1a). Several recent results indicate that 

mutual inhibition may be at the core of reward-guided choice31–42.

A recent study using magnetoencephalography demonstrated that human ventromedial 

prefrontal cortex (vmPFC) and intraparietal sulcus (IPS) expressed a key signature of mutual 

inhibition during economic choice: a change from encoding the sum of to the difference 

between chosen and unchosen values31 (FIG. 1b). This signature was subsequently also 

found in a macaque study of local field potentials (LFPs) from several subregions of the 

macaque PFC, including the orbitofrontal cortex (OFC), the dorsolateral prefrontal cortex 

(DLPFC) and the anterior cingulate cortex (ACC), confirming the generality of the mutual 

inhibition principle across species32.

Single-neuron recordings in macaques provide further evidence for a mutual inhibition 

process. In a binary choice, firing rates of neurons in both the vmPFC34 and the ventral 

striatum (VS)35 encode the values of the two offers through monotonic changes in firing 

rates. During the comparison period of the task, the directions of the tuning curves (positive 

or negative) for the two offers are opposed34,35 (FIG. 1c). Consequently, the ensemble 

activity of both areas functions as a comparator between the values of the two offers. The 

fact that similar effects are seen in both areas, and with largely overlapping time courses, 

suggests that neither is the sole site of comparison, but that comparison may take place in 

both regions simultaneously.

Nor are the vmPFC and the VS likely to be unique in this respect; the mutual inhibition 

model has also been used to capture the dynamics of single-unit activity in the OFC36 (FIG. 

1d), the DLPFC32 and the lateral intraparietal cortex (LIP)39,42. Data from studies in the 

dorsal premotor cortex (PMd) are also consistent with a mutual inhibition process. In this 

region, neural responses during economic decisions encode the relative value of targets in 

their response fields, and show additional sensitivity to the physical distance between those 

response fields40,41. This finding suggests that even ostensibly motor areas are part of the 

distributed choice network.
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Distributed transformations across cortical circuits—The body of work described 

above suggests that decisions occur through repeated mutual inhibition computations 

occurring simultaneously in both the motor and the abstract value domains. This implies that 

comparison is not the unique purview of any single brain area43–45. The distributed account 

instead suggests that multiple areas may perform a similar non-specialized function: they 

may all perform a comparison operation like mutual inhibition on the inputs received. 

Importantly, however, those inputs would differ by region. The nature of the competition 

occurring in any given area would then depend upon the interaction of the particular 

demands of the task46 and each area’s anatomical inputs47,48. For example, tuning 

properties of neurons in the OFC may be relatively specialized for gustatory comparisons49, 

whereas neurons in cingulate cortex may appear specialized for motor cost evaluations50.

This idea of multiple distributed comparators may help to resolve differing interpretations of 

imaging studies in neuroeconomics, which have attempted to localise the regions that are 

most critical to value comparison. In blood-oxygen level dependent (BOLD) functional MRI 

(fMRI) studies, debate has particularly centred on different regions of medial frontal cortex. 

For example, one study used the mutual inhibition model to predict how variation in levels 

of vmPFC GABAergic inhibition, indexed via magnetic resonance spectroscopy in humans, 

related to cross-subject variation in both choice stochasticity and value correlates in the 

vmPFC BOLD fMRI signal33 (FIG. 1e). A related study argued that because activity within 

a mutual inhibition model is highest at the end of the choice process and this activity is 

persistent, then the fMRI signal will be greatest for faster (easy) decisions, as is typically the 

case in the vmPFC51. However, other studies have argued that one should only consider 

accumulated activity until a decision boundary is reached. In this case, the fMRI signal 

would be higher for slower (difficult) decisions, as is typically found in the dorsomedial 

PFC52.

A potential reconciliation of these results would be that both regions implement a mutual 

inhibition process but differ in their response properties post-choice after a decision bound 

has been reached. This explanation is supported by the event-related profile of LFP 

recordings from multiple subregions of the PFC during reward-based choice32. It is also 

supported by the simultaneous emergence of single unit choice-related signals across six 

simultaneously recorded cortical regions in perceptual choice53, and the demonstration that 

motor output (corticospinal excitability) is already biased as a decision is unfolding54.

The question then arises of how different areas interact as choices are made. Here, whole-

brain techniques (such as fMRI) come into their element55. Although anatomical 

connectivity is stable, functional connectivity is more flexible. One recent study examined 

changes in functional connectivity during multi-attribute choices involving integration of 

stimulus-based and action-based attributes37. A model of choice in which competition via 

mutual inhibition occurred at multiple levels (stimuli, actions and attributes) best explained 

the subjects’ choices. BOLD fMRI signal in the intraparietal sulcus (IPS) matched with the 

model’s predictions from the competition over which attribute was most relevant, with the 

value difference signal exhibiting opposing signs for the relevant and irrelevant attributes. 

Notably, changes in IPS functional connectivity to other brain areas depended on which 

attribute was most relevant to the current choice at hand. Connectivity was increased to 
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either OFC or putamen when stimuli or actions were respectively made relevant. A related 

study of multidimensional learning demonstrated that the IPS is also particularly active 

when subjects update their understanding of the relevance of particular dimensions for 

guiding future choices56.

Recurrent

The predominant paradigm in studies of simple economic choice has been N-alternative 

forced choice, in which two or more options are presented simultaneously to the subject and 

they select the most valuable. However, real-world choice is often sequential rather than 

simultaneous in nature57,58. Even ostensibly simultaneous choices may be made sequential 

by virtue of limits imposed by attention or noise that needs to be integrated out across 

time2,14,59. The relationship between simultaneous and sequential accounts of choice 

parallels a distinction made between the computational roles of two distinct architectures of 

neural networks21: feedforward and recurrent architectures.

Two different classes of network architecture—Feedforward neural networks — 

recently popularised through the impressive perfomance of convolutional networks in 

computer vision (ConvNets)60,61 — contain units that exhibit activity that is only 

dependent upon the currently presented input. Such networks are ideally suited to tasks 

involving classification of multiple, simultaneously presented input features, such as pixel 

intensities in an image. The design of the ‘local convolution’ and ‘max pooling’ steps in a 

ConvNet were based on the response properties of primary visual cortex (V1) simple and 

complex cells, respectively60. Modern feedforward ConvNet models strikingly reproduce 

single-unit responses along the visual hierarchy62,63.

However, feedforward networks are poorly adapted to tasks that require some form of 

persistent memory for previous states across time. Recurrent neural networks (RNNs), by 

contrast, contain units that not only receive inputs from other network layers but also receive 

their own previous output at time t-118,64. This allows RNNs to show sustained memory for 

inputs long after they have been removed, allowing temporally extended computations to be 

performed on sequential inputs65,66. One of the original successes of such networks was in 

showing how a biologically plausible network could account for working memory responses 

in the PFC67,68. The recurrence of these networks recapitulates the high degree of recurrent 

connectivity observed empirically in prefrontal circuits relative to other parts of the 

cortex69,70.

RNNs as a naturalistic substrate for sequential choices—At first glance, the 

simultaneous simple economic choices between two goods often studied in the lab appear 

well suited to being solved with a feedforward network. The options in such choices are, 

after all, presented to the subject simultaneously and statically. However, reaction times in 

such tasks vary systematically as a function of value, and this implies that the underlying 

computation is dynamic rather than static71. Recent models in neuroeconomics have 

therefore moved away from static economic accounts of choice towards temporally extended 

algorithms, in which noisy estimates of value are integrated sequentially over time14,52. 

These algorithms can be formally related to the model of competition via mutual inhibition, 
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discussed above and in FIG. 172. This network exemplifies how a biologically plausible 

RNN could implement an evidence accumulation algorithm11.

But why should the brain use a recurrent network if a feedforward architecture appears 

sufficient? It may be because of the sequential structure of choices that are typically faced in 

natural environments, such as foraging decisions. These choices probably have shaped the 

evolution of the frontal cortex most heavily43,73. Foraging theory emphasizes the fact that 

nearly all decisions must be made in a strategic manner, and doing so requires a telescoping 

representation of rewards and their future allocation distribution74,75. For example, when 

macaque monkeys perform a foraging task, activity within the anterior cingulate cortex 

(ACC) accumulates slowly over time in a depleting resource environment until a fixed firing 

threshold is reached, at which point a change in behaviour is triggered76.

The algorithmic structures of economic and foraging models are certainly very different, and 

one possibility would be that they are implemented by different brain systems, with the 

former being feedforward and the latter recurrent. We consider it more likely, however, that 

evolution will have developed a general approach to solving both types of decisions using 

temporally extended, recurrent implementations. The neural mechanisms of economic 

choice may even build on the underlying architecture laid down to solve foraging choices 

using recurrent computations. This fits well with modern ideas in neuroeconomic accounts 

that argue for temporal integration of noisy value estimates across time14,52,71, with 

attention being sequentially allocated to different choice options59,77.

Understanding recurrent network computations—The majority of neuroscientific 

studies to date using RNNs have used networks containing hand-tuned synaptic weights to 

elicit specific behaviours11 (Fig. 1a). Although this is a valuable starting point, it produces 

an unrealistic homogeneity of neuronal responses that does not match the empirically 

observed heterogeneity in cortical populations78–80. Recently introduced automatic training 

algorithms for RNNs have vastly increased their capacity to perform a wide variety of tasks 

and also, potentially, to accurately describe neural data81,82. A major challenge is then to 

understand the nature of the computations that an RNN is performing after it has been 

automatically trained.

An elegant solution to this challenge is to perform ‘reverse engineering’ on RNNs that have 

been fit to data83. This was exemplified in a recent study of PFC population responses, in 

which the PFC performed both the selection and the integration of relevant information in a 

context-dependent perceptual decision task84. The authors trained a randomly connected 

RNN to capture key features of the behavioural data; activity in the trained RNN matched 

with several key features of the neural population data. Reverse engineering of the RNN then 

revealed the mechanisms whereby such a computation could be achieved within a single 

cortical circuit. Two stable line attractors were present within the trained RNN; the selection 

of relevant inputs depended on how the network’s activity relaxed towards these line 

attractors under different contexts. Similar analyses of population recordings should yield 

important insights into the recurrent computations supporting reward-based choice in the 

near future85.
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Hierarchical

A hierarchical organization is a cardinal feature of the organization of the brain’s reward and 

decision-making system. Information from one area is converted to a more abstract form that 

becomes more comprehensive as it increases in complexity. One feature of the hierarchy of 

brain areas associated with economic choice is that there are new inputs at each point. Thus, 

for example, the OFC receives gustatory inputs, the vmPFC receives limbic inputs, the 

subgenual ACC receives hypothalamic inputs, and the dorsal ACC receives motor inputs86. 

These inputs provide a way for different factors to enter into the distributed network 

subserving choice. They also allow for each area to have a different specific contribution to 

choice even if the general role of incorporating information into ongoing decisions is similar. 

This viewpoint differs from that in which all factors that influence choices must come 

together at a single point to create a single value scale before they can influence choice.

Hierarchical RNNs allow for multiple timescales—Humans excel at tasks that 

demand online organisation of behaviour across multiple differing timescales. Such tasks are 

particularly sensitive to PFC damage87. It has been hypothesised that the presence of 

parallel and hierarchical architectures within PFC allow different pieces of information to be 

remembered and parsed at multiple timescales88,89. This idea recapitulates recent 

developments in the design of RNNs in computer science. In particular, by making recurrent 

networks multi-layered or ‘deep’21,90, it is possible to dramatically improve performance 

on tasks that operate over multiple timescales (such as the generation of meaningful 

sentences to describe images91, and the recognition of speech65). The relevant timescales in 

speech are unknown to the neural network prior to training, but using automated training of 

multiple connected RNNs, the relevant temporal structure is extracted to successfully 

generate the requisite output. In decision-making, the ability of a population of cortical 

neurons to exhibit multiple timescales of integration over a previous history of rewards has 

recently been shown empirically92. These timescales vary in a manner that is dependent 

upon the timescale of integration of the animal’s current choice behaviour92,93.

Hierarchical timescales for information processing in cortex—A hierarchy of 

timescales across brain regions has recently been explicated in a large-scale network model 

of dynamical processing in non-human primate neocortex. One study combined a mean-field 

reduction of a RNN within each cortical area with detailed knowledge of anatomical 

connectivity between different areas derived from tracer studies94. This established a 

mechanism whereby multiple timescales could coexist within a single anatomical network, 

explaining the temporal structure of neurophysiological data recorded at rest across different 

cortical areas95. This work suggests an explanation for why early sensory areas possess an 

inherently transient temporal structure (changing across tens of milliseconds) while higher 

regions (for example, in the PFC) show a more-sustained, longer-lasting temporal profile 

(across hundreds of milliseconds or longer) (FIG. 2a).

Recent decision-making paradigms have combined evidence accumulation at both slow 

(inter-trial) and fast (intra-trial) timescales96. It might then be predicted that evidence 

accumulation at slow timescales would be supported by cortical regions with sustained 

temporal structure. Interestingly, the dACC emerges as having the most sustained temporal 
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structure within the regions that have been characterised thus far95. This observation sits 

well with studies that have linked ACC activity to disengagement from a foreground option 

in foraging tasks75,76,97,98 and during exploration99. A foreground option may be held in 

mind over many trials, but disengagments are linked to abrupt and coordinated changes in 

network activity in the medial PFC100 (FIG. 2b). Prior to disengagement, ramping activity 

is observed in both medial PFC–dACC76,101,102 and another region associated with 

exploration99, the rostrolateral PFC102.

Relationship to cognitive hierarchies—The observed relationship between anatomical 

and temporal hierarchies may be related to hierarchical accounts of PFC function in other 

cognitive paradigms103. One such account suggests the existence of two parallel streams of 

rostro-caudal organization within the PFC, along the medial and lateral surfaces of this 

region, respectively104 (FIG 2c). Data from BOLD fMRI studies suggest that a hierarchy 

relating to states of internal motivation exists along the medial surface 104–106, with more 

anterior portions reflecting block-wise changes in reward value and more posterior regions 

reflecting trial-to-trial changes. By contrast, studies indicate that a hierarchy of cognitive 

control processes exists along the lateral surface104,107,108. Again, anterior regions of the 

lateral surface exhibit sustained changes reflecting the complexity of the current block, 

whereas more posterior regions of this surface reflect task complexity only for relevant 

individual trials. Similar rostro-caudal PFC hierarchies have also been found in a related 

study where activation transferred to the striatum during the course of hierarchical rule 

learning109. This observation was well described by a hierarchically organized network 

model of corticostriatal interactions110 inspired by a particularly successful form of RNN 

known as ‘long short-term memory’111,112.

Evidence for the framework

Lesions and component processes

An important property of distributed computing systems is graceful degradation17. Because 

information is stored broadly, small amounts of damage to the system is seldom 

catastrophic; major impairments only come with large amounts of damage. Damage 

selectively impairs difficult retrieval processes and spares easier ones. The analogue of 

damage in connectionist networks is brain lesions. Brain lesions have long provided an 

important source of evidence for functional specialization. In the visual system, lesions to 

the middle temporal area cause akinetopsia113 and lesions to fusiform face area cause 

prosopagnosia114, confirming functional specialization for motion perception and face 

processing, respectively.

It has been natural for experimenters to design lesion studies that allow conceptually 

different components of choice to be assigned to different brain regions, and results of these 

studies have advocated a degree of functional specialisation within the PFC115–117. 

However, given how profound the impact of PFC lesions on day-to-day choices can be118, 

the impairments on choice are often surprisingly mild. PFC lesions sometimes lead to 

graded deficits in choosing, with difficult decisions impaired but easier ones spared115. It is 

possible that these deficits are mild because the tasks seek to differentiate component 
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processes of economic choice rather than addressing the temporally extended nature of real-

world economic decisions87.

The variety of cognitive functions affected by PFC lesions also casts doubt on the idea that 

choice, or even value comparison, is a specialisation of any single brain region. This doubt is 

supported by functional imaging data from studies of simple economic choice: different 

types of comparison signal are observed in different brain areas, depending upon the task at 

hand32,46,52,75. Moreover, regions implicated in choice in lesion and fMRI studies are not 

specific to choice: they are associated with cognitive processes that include working 

memory, strategic planning, executive control, reasoning and social cognition119. Together, 

this evidence suggests that many brain regions will collectively contribute to the process of 

comparison, and also that brain regions subserving choice make their contribution as part of 

a larger supporting suite of cognitive functions. By way of analogy, reward-guided choice 

seems to operate less like motion- or face-processing and more like the ability to drive a car, 

form a political preference or do calculus: such abilities rely on coordinated computations 

across many brain structures and systems.

Ubiquitous value correlates

Another feature of connectionist networks is that their storage of memories depends on 

distributed synaptic weight changes across all parts of a network, rather than at a single 

site17. Value is closely related to memory: it is a feature of an option that is inferred from 

associations with reward, which are based on past experiences120. In connectionist systems, 

memories are widely distributed (a feature leading to graceful degradation, discussed above), 

and traces of those memories can be observed throughout the network17; one might then 

predict that the same could also be true of value.

It is indeed the case that value correlates can be found in multiple brain regions. Correlates 

of value are seen in core reward regions such as the OFC49, the vmPFC121 and the VS122, 

and they are also observed in the amygdala, the insula, the dorsal striatum, the midbrain, the 

pregenual, subgenual, dorsal anterior, and posterior cingulate cortices, the dorsolateral and 

ventrolateral PFC, the IPS, and even the sensory and motor cortices 40,123–130. One recent 

neuroimaging study found that over 30% of the brain exhibited such signals131. Although 

there are certainly differences between the types of value-related information represented in 

these regions, there are also many overlaps.

Despite the ubiquity of value correlates, it often remains unclear whether activity in any area 

truly represents value — or what precise definition of value we should use28,132,133. One 

common criticism of neuroeconomic studies is that putative value correlates often reflect 

other correlated variables, such as attention, salience or, even, subthreshold premotor 

activation. There have certainly been some important efforts to disambiguate value correlates 

from alternative explanations28,133,134. Of course, it is possible that one of these value 

correlates genuinely represents value in the formal sense. However, in distributed systems, 

representation is often an emergent property; that is, it is driven by the specific pattern of 

connection between units and is not a property of any particular unit. In other words, value 

may be a network routing principle rather than a quantity that is represented. This 
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eliminative view of value would be consistent with a subset of both classic studies and 

recent work in behavioural economics on process models of economic choice58,135,136.

One particular value signal is probably an emergent property. Recent work indicates that the 

‘chosen value’ variable is a by-product of variation in decision dynamics across trials. To 

understand why, consider the model of competition via mutual inhibition discussed above11 

(FIG. 1). Although many units’ activities in this network model correlate with chosen value, 

this quantity does need not to be represented to form a decision. Instead, it may arise 

naturally as a consequence of the varying speed at which network dynamics unfold on 

different trials31 (BOX 3).

The above findings are in line with those in recent studies of motor control, which indicate 

that motor cortical activity is better understood as a dynamical system than as one that 

represents movement parameters137,138. This line of work suggests that chosen value 

correlates emerge as a necessary consequence of recurrent network dynamics in mediating 

competition139, and, again, that chosen value may not be represented per se. It remains 

possible that other ostensible value correlates (such as offer value and experienced value) are 

also by-products of the computations that underlie choice and are not reified in the activity 

of dedicated reward neurons or regions135.

Elusive pure value

A modular view of reward-based choice predicts that certain brain regions or populations of 

neurons should be specialised for value, meaning that they respond primarily to values of 

options. Because value computation is a key intermediate stage in economic choice, the 

existence of specialized value regions or neurons is an important prediction of modular 

theories. By contrast, distributed theories do not demand any specialized value computation. 

Instead, in these theories, value is distributed broadly across a large number of regions, and 

is predicted in neurons that have other roles unrelated to valuation.

Some meta-analyses of neuroimaging data have argued that certain brain areas are central to 

‘pure valuation’140. However, even in putative core reward regions such as the vmPFC, 

OFC and VS, a wealth of information processing occurs that is not related to value. For 

instance, the vmPFC is engaged by several ostensibly value-neutral factors, including 

autobiographical memory141, spatial navigation142, imagination143 and social 

cognition144; OFC is engaged by non-reward processes like conflict, working memory, and 

rule encoding145,146. Likewise, factors that modulate individual neurons in these areas may 

include ‘valueless’ changes in outcome expectancy147,148, previous outcomes92, intention 

to switch as well as other strategy variables149, metacognition150, spatial positions of offers 

and choices45, rules and task set146, and even irrelevant task variables151. It is possible that 

these apparently value-neutral signals are observed in these tasks because the tasks 

nevertheless demand the computation of value. However, it is becoming more clear that 

neurons in most, if not all, value-relevant regions encode a large number of task-relevant 

variables simultaneously, a property known as mixed selectivity152,153.
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Neuronatomy

Finally, the strongest evidence for a distributed, hierarchical and recurrent approach to 

choice comes from neuroanatomy. Of course, the original work that provides the foundation 

for this approach developed side by side with progress in understanding the anatomy (and 

physiology) of the nervous system15. Perceptrons, feed-forward networks, parallel 

distributed networks, Hebbian learning and ConvNets were all inspired from observations 

about brain structure and physiology.

In the cortex, anatomical studies have indicated a reciprocal feedforward and feedback 

structure 154. This architecture was quantified via detailed tracer studies in macaques155 

and diffusion imaging studies in humans22. Connectivity differences between adjacent 

prefrontal regions are smaller than is often appreciated, and adjacent regions generally blur 

into each other gradually rather than showing categorical boundaries156. Likewise, when 

considering the organization of subcortical brain regions, it is now accepted that cortico-

thalamo-basal ganglia loops are not segregated as once thought157 but instead show strong 

functional convergence86.

Local intraregional connections in the cortex also argue for a distributed and recurrent 

organization. This is particularly true of ‘higher’ cortical areas that subserve cognitive 

functions. In particular, dendritic arbors of PFC pyramidal cells are endowed with many 

more dendritic spines than pyramidal cells in sensory areas, meaning that a single neuron in 

prefrontal areas 10, 11 or 12 receives 16 times the number of excitatory inputs of a neuron in 

V170. The majority of these cortical connections are local rather than long-distance, 

allowing these circuits to have a highly recurrent organization that is similar to that observed 

in RNNs.

Discussion

In this article, we have presented an overview of recent work suggesting that reward-based 

decisions reflect the outcome of a distributed, hierarchical and recurrent computational 

process. These ideas have their genesis in connectionist and neural network models that have 

also been used to understand perception and memory, among other processes. More recently, 

these ideas have been integrated to form detailed models of economic or reward-based 

decisions8–14.

According to the distributed view, the implementation of economic choice is dissimilar to a 

description of how it works at a more abstract level. Choice is an emergent consequence of 

the interactions of small computational elements158. By contrast, much recent research into 

the neurobiology of choice has adopted a modular framework, in which major components 

of choice map directly onto brain structures and discrete computations. Thus, for example, 

this framework encourages scholars to look for the specialized sites of evaluation, 

comparison and action selection. The change in viewpoint we propose leads us to reframe 

this debate and many other central questions (BOX 1).

The work we describe here brings up a philosophical issue that has long influenced cognitive 

science: mental representation16. It has long been unclear whether we ‘represent’ mental 
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concepts. That is, whether specific patterns of brain activity serve to recapitulate a mental 

version of some external event or object. Although neural correlates of important events and 

objects are observed, these correlations may be consequences of internal processes. Recent 

work provides two reasons to doubt that value, at least, is explicitly represented in the brain. 

First, in regards to chosen value, it seems that although value is decodable, it is possible that 

it is an artefact of the way neural data are analysed32. Second, in regards to value more 

broadly, the case is less clear, but connectionist models suggest that is possible to construct 

networks that make good choices without explicit value representations; these networks at 

the very least have a similar flavour to neuroanatomy17.

Paul and Patricia Churchland have articulated the notion of eliminative materialism, which 

includes a suggestion that natural categories we use to describe psychological phenomena do 

not do a good job of capturing the organization of brain processes that generate our mental 

lives24. Economic choice may be one such case in point. Choice as a whole and steps like 

evaluation, comparison, selection and monitoring stages do not necessarily correspond to 

discrete anatomical substrates, to discrete neuron types, or even to discrete computations. 

Instead, they may be emergent consequences of processing units performing simple 

operations on inputs, ones that are radically different from the operations of the system as a 

whole24.
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Box 1

A change of perspective

Adopting a circuit-based perspective of reward-based choice reframes the questions that 

we ask about how decisions are formed, and alters our interpretation of the resulting 

neural data. Fundamentally, it changes the question from “What is represented?” to “How 

is the computation implemented?” To be more specific, the modular perspective has led 

to us asking questions such as how is value computed and represented in the brain? In 

what regions do the evaluation, comparison and selection steps occur? In what ‘space’ 

(for example, goods-based or action-based) does value comparison occur? Do the 

computations performed in a particular brain region precede or follow the decision? What 

are the qualitative functional differences between different regions of the reward system?

By contrast, the distributed, hierarchical and recurrent perspective of reward-based choice 

makes a different set of assumptions, and these in turn lead to different research 

questions. First, it assumes that the component processes of choice may not be localised 

to particular computations in discrete brain areas. Instead, the components may be 

distributed across many regions simultaneously — implementing fundamentally similar, 

canonical computations. What is the nature of these computations, and how do different 

brain regions interact as choices are made?

The second assumption is that a comparison may not occur in a single decision space: 

decision spaces may reflect the anatomical connections of a given region, or even be 

artefacts of the experimental design. How does the hierarchical organization of decision 

and reward areas lead to effective choices? And how does it explain the observed 

hemodynamic and neuronal response patterns?

Third, most brain regions are both pre- and post-decisional. Equally, because decision 

formation occurs gradually, most regions may be better classified as mid-decisional. How 

does neuroanatomy produce a gradual transformation from offers to choices? What role 

do the brain’s ubiquitous recurrent and feedback connections play in that process?

Fourth, value, or at least certain correlates of value, may not be represented per se. The 

implementation of choice need not recapitulate the algorithms that can be used to 

describe the overall choice process. Instead, the algorithm is an emergent property of the 

system: certain correlates of value could therefore emerge naturally as a consequence of 

how neural dynamics unfold across different trials. What is the structure of these 

dynamics, and why might they give rise to value correlates? Which correlates of value is 

this true for?
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Box 2

Distributed decision-making in bee swarms

Although modular decision systems are often intuitive — the functions map directly onto 

the structure — distributed ones are not. The decision process of a bee swarm provides a 

natural and intuitive example of a distributed decision system.

In late spring, a hive of bees will enter into a swarm state and begin the process of 

choosing a new hive site25,159. Individual scout bees make reconnaissance flights to 

identify and evaluate potential sites. The ideal sites are open, dry cavities of medium 

volume that are located high up in the canopy, protected from wind, and facing south; 

thus adaptive decisions need to optimize across many dimensions. On finding a potential 

site, each scout returns to the swarm and signals its location and quality through a 

specific patterns of dancing. Dances signalling high-quality sites can recruit other bees to 

investigate the same site. Subsequent bees evaluate the popularity of a potential site by 

counting the number of visitors there. When scouts detect a quorum of other scouts at a 

hive site (around 20 bees), they transmit an activation signal to the swarm. Bee swarms 

even show a distinct mutual inhibition signal that reduces the chance of costly 

ambivalence160.

Beehive decision-making has several notable features that make it a good analogy for 

distributed decision-making25. First, there is no localized evaluation: no individual bee 

has more than an extremely limited amount of information about the world, and each 

bee’s behaviour is remarkably stochastic. Second, there is no central decision-maker: no 

individual or subgroup makes the decision; instead, it arises in a well-understood 

emergent manner from the simple rules followed by individuals. Thus, removing any bee 

or bees would degrade performance in a graded but not all-or-none manner. Third, there 

is very little stable functional specialization: scouts are drawn at random and serve as site 

selectors, as observers of other bees’ dances, and as both members and monitors of the 

hive site quorum. Fourth, information about the value and location of options is firmly 

linked at every step of the process, thus sidestepping the otherwise difficult binding 

problem associated with choice and selection45.

As a consequence, the steps of evaluation, comparison and selection are clearly 

performed by bees, but at the same time they are not performed by dedicated subsets of 

bees or at specific times. No individual bee ever has knowledge of more than one hive 

site, so no bee performs a comparison159; instead the comparison step emerges as a 

consequence of the types of interactions the bees are programmed to perform.
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Box 3

Value representations as epiphenomena of decision dynamics

One particularly ubiquitous signal during reward-guided decision tasks is a representation 

of chosen value34,35,39,49,129. This representation is isolated by correlating some 

measure of neural activity (firing rates, local field potentials (LFPs) or functional MRI 

signals) with the value of the option that will eventually be chosen on that trial. In 

measurements that are time-varying, this correlation can be repeated across many 

different timepoints, isolating the timepoint at which maximal variance is explained (see 

the figure, part a (green line)).

Why might this signal occur so commonly? Is it expressly represented by the brain, or is 

it an artefact? A clue comes from examining brain areas that also carry representations of 

other decision variables. These include the offer values of the options available, and the 

eventual categorical choice that the subject will make. Several studies32,39,129 show that 

the maximal variance explained by chosen value occurs between an initial representation 

of offer values, and the final representation of choices (see the figure, part a). Chosen 

value representations emerge as the decision is being formed, rather than after the choice 

is completed.

Decision formation is, of course, a dynamical process occurring at different rates on 

different trials71. Crucially, chosen value influences decision speed. Indeed, at a fixed 

timepoint in the ‘middle’ of the decision process, the decision may have neared 

completion on some trials (typically with high chosen value), whereas on others it may be 

a long way from completion. Activity in any part of the brain that reflects the progression 

of this dynamical process will thus correlate with the chosen value at the mid-decision 

point (see the figure, part b). Notably, these dynamics have several possible neural 

substrates, including ramp-to-threshold accumulation in single neurons2, neural 

population trajectories through a low-dimensional manifold137, or bulk activity observed 

at the level of LFP or magnetoencephalography (MEG) signals32. In each case, correlates 

of chosen value would naturally emerge as a consequence of varying dynamics across 

trials. This idea has, for example, been used to explain the origin of a commonly 

observed ‘unchosen minus chosen value’ signal in dorsomedial prefrontal cortex using 

functional MRI52. Additionally, a recent study estimated the speed at which dynamics 

unfolded on a trial-by-trial basis using LFP and MEG data32. The authors found this 

single-trial estimate of decision dynamics explained some of the variance that was 

previously explained by chosen value – implying that the underlying cause of chosen 

value correlates was indeed linked to decision speed.
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Figure 1. Evidence for competition via mutual inhibition during reward-guided choice.
a | A biophysical attractor network model of decision-making11 relies upon effective 

competition via mutual inhibition between ‘A units’ and ‘B units’, which are neurons 

selective for a different option. Noise is added as an input to all excitatory units in the 

network, causing choice behaviour to vary stochastically on different simulations. This 

model has been used to explain various findings. b | The model predicts variation in 

correlates of value as a function of time31,32. In human magnetoencephalography data31, 

the model predicts a transition from ‘overall value’ correlates to ‘value difference’ 

correlates. In macaque single units recorded from dorsolateral PFC32, it predicts a sequence 

of value correlates from the original difference in options available to the eventual 

categorical choice. c | The model predicts an anticorrelation of regression coefficients 

between different presented offers. This is observed in single neuron data recorded from 

ventromedial PFC and ventral striatum during sequential choice34,35 d | In orbitofrontal 

cortex, different neurons are found that respond to the values of different juice offers, the 

value of the chosen offer, or the identity of the chosen juice49. It has been proposed that 

these neuronal classes correspond to different identities of neurons in the network model36, 

whose response properties are shown here. e | The model predicts variation in choice 
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behaviour as the balance between excitation and inhibition is altered. This matches with 

evidence from human subjects, whose choice consistency is found to correlate with resting 

concentrations of glutamate and GABA in ventromedial PFC, indexed using magnetic 

resonance spectroscopy33.
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Figure 2. Hierarchical organisation of cortical timescales and its relationship with reward-guided 
choice.
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