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Abstract

Beamformers are a commonly used method for doing source localisation from 

magnetoencephalography (MEG) data. A key ingredient in a beamformer is the estimation of the 

data covariance matrix. When the noise levels are high, or when there is only a small amount of 

data available, the data covariance matrix is estimated poorly and the signal-to-noise ratio (SNR) 

of the beam-former output degrades. One solution to this is to use regularization whereby the 

diagonal of the covariance matrix is amplified by a pre-specified amount. However, this provides 

improvements at the expense of a loss in spatial resolution, and the parameter controlling the 

amount of regularization must be chosen subjectively. In this paper, we introduce a method that 

provides an adaptive solution to this problem by using a Bayesian Principle Component Analysis 

(PCA). This provides an estimate of the data covariance matrix to give a data-driven, non-arbitrary 

solution to the trade-off between the spatial resolution and the SNR of the beamformer output. 

This also provides a method for determining when the quality of the data covariance estimate 

maybe under question. We apply the approach to simulated and real MEG data, and demonstrate 

the way in which it can automatically adapt the regularization to give good performance over a 

range of noise and signal levels.

1 Introduction

The MEG inverse problem involves the estimation of current distributions inside the head 

that give rise to the magnetic fields measured outside. Beamforming is a commonly used 

method for solving this problem (Veen et al. (1997);Vrba and Robinson (2000)), and 

corresponds to using an adaptive spatial filter that is designed to extract the origins of a 

signal from some pre-specified spatial location. A beamformer can be scanned over the 

whole brain to create a three-dimensional image showing areas of localized brain activity.

The spatial filter that represents the beamformer for a given location is a set of weights that 

is to be applied to the MEG sensor data. These weights are determined from knowing the 

forward model, i.e. the lead field matrix, and an estimate of the MEG data covariance. The 
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accuracy of the MEG data covariance matrix estimation is therefore crucial, and it must be 

estimated from temporal windows of finite length (Barnes and Hillebrand (2003)). However, 

it can often be beneficial to focus the beamformer on a specific time period and frequency 

band (Dalal et al. (2009); Fawcett et al. (2004)). This introduces a trade-off between the 

need for large integration windows to give good data covariance estimation, and the desire to 

focus on a specific time-frequency window. It is therefore possible that we can be operating 

in regimes where the quality of the data covariance estimate may be under question.

When the amount of data used to estimate the data covariance matrix is unavoidably low, 

e.g. due to focused time-frequency windows, and/or relatively few trials of data, one solution 

is to use regularization. Regularization amplifies the diagonal of the covariance matrix by a 

pre-specified amount, and is sometimes referred to as diagonal loading (Vrba and Robinson 

(2000)). Although providing some robustness against erroneous covariance estimates, and 

hence improving the estimate of electrical activity at a specific location, this regularisation 

removes the spatial selectivity of the beamformer, in the limit tending to that of a dipole fit 

(Hillebrand and Barnes (2003)). This lack of spatial selectivity gives rise to poor immunity 

to environmental noise (Litvak et al. (2010); Adjamian et al. (2009)) and poorer spatial 

resolution of beamformer images (Brookes et al. (2008)). As a result the amount of 

regularization can have a large influence on the final beamformer image, the choice to date 

has been largely subjective; two popular choices being to use the lowest eigenvalue of the 

covariance matrix (Robinson and Vrba (1999)), or simply to use zero (Barnes et al. (2004)).

In this paper, we propose a method that provides an objective solution to the problem of how 

to choose the amount of regularization that is required. This uses a Bayesian Principle 

Component Analysis (PCA) of the data to determine the size of the subspace 

(dimensionality) of the data that can be reliably estimated given the amount of evidence 

available in the data (Bishop (1999)). The estimate of this dimensionality acts as a surrogate 

for estimating the amount of regularization of the data that is required to give a good 

estimation of the data covariance matrix. Probabilistic Bayesian PCA provides an estimate 

of the data covariance matrix to give a data-driven, non-arbitrary solution to the trade-off 

between the spatial resolution and the SNR of the beamformer output. The estimate of 

dimensionality itself can also be used as an indicator of when there is insuffient information 

to reliably estimate the data covariance.

2 Methods

2.1 LCMV beamforming

The N × T matrix of MEG signals, y, recorded at the N MEG sensors over T time points is 

modelled as

(1)

where H(ri) is the N × 3 lead field matrix and m(ri) is the 3 × T vector timecourse for a 

dipole at location ri, i = 1 … L, and e ~ (0, Ce) is the noise with  Using this forward 
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model we can use a beamformer to optimise the 3 × N spatial filter W (ri), that estimates the 

dipole timecourse at location ri from the sensor data as

(2)

Here we use a linearly constrained minimum variance (LCMV) beamformer that has unit 

response in the pass band and complete attenuation in the stop band, resulting in the 

following solution for the weights matrix (Veen et al. (1997)):

(3)

where Cy is the N × N data covariance matrix estimated from a time window of interest. This 

equation can be used at multiple locations to produce a whole brain image of the brain’s 

activity. However, the sensitivity of the beamformer varies with distance from the sensors, 

such that deep sources will result in a much larger value than for superficial sources. To 

account for this we normalise equation 2 by an estimate of the noise projected by the spatial 

filter based on the noise covariance matrix, Ce:

(4)

where  is defined as the projection of H that beamforms the maximum power, as in 

Sekihara et al. (2004). We will refer to z(ri) as the pseudo Z-statistic (as it is defined in 

Brookes et al. (2008)). We also note that this is related to the Borgotti-Kaplan beamformer 

used in SAM implementations(Sekihara et al. (2001)). In practise, we use  where 

estimated from the smallest eigenvalue of the data covariance matrix. Equation 4 also 

corresponds to the “Neural Activity Index” used in Veen et al. (1997) if Ce is set to I.

2.2 Data Covariance Matrix Estimation and Regularisation

In practice, the N × N data covariance matrix must be estimated from the data using a time 

window of interest. Typically, this is estimated using the sample covariance matrix:

(5)

where t(1) … t(Tcov) is the time window of interest, and  is the mean over time points. This 

corresponds to estimating in the order of N2 parameters from Tcov samples. Hence, when the 

amount of data used to estimate the data covariance matrix, Tcov, gets low (e.g. due to 

focused time-frequency windows) the accuracy in estimating the data covariance matrix 

becomes unstable. A solution is to use regularization. A typical approach to regularisation in 

MEG beamforming is to amplify the diagonal of the covariance matrix by a pre-specified 
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amount, and is sometimes referred to as diagonal loading (Vrba and Robinson (2000)). In 

this approach equation 5 is replaced by:

(6)

where μ is known as the regularisation parameter. Increasing μ reduces the effective number 

of independent parameters to be estimated in the covariance matrix, resulting in a more 

stable estimation of the covariance matrix when Tcov is low. However, increasing μ causes 

the weights to be less specific to individual channels. While this increase in spatial averaging 

is what helps to improve the signal to noise ratio of the beamformer output, it also leads to a 

decrease in the spatial resolution of the beamformer output (Brookes et al. (2008)). In other 

words, the choice of μ is a trade-off between ensuring stable covariance matrix estimation 

and maintaining spatial specificity.

The approach described in equation 6 is from a general class of statistical methods designed 

to improve the estimation of covariance matrices based on the concept of shrinkage (Schäfer 

and Strimmer (2005)). As μ is increased, the off-diagonal elements/parameters of the 

covariance matrix are relatively shrunk to zero. However, how do we go about choosing the 

value of μ objectively and adaptively? In the next section we propose using a shrinkage 

approach that uses Bayesian Principle Component Analysis (PCA) for estimating the data 

covariance matrix in MEG beamforming. This has the advantage of being able to 

automatically and adaptively determine the amount of regularization that is required.

2.3 Bayesian PCA

Bayesian PCA is a probabilistic approach to PCA that infers on a generative model of the 

data with appropriately chosen priors (Bishop (1999)). In particular, a key feature of this 

approach is that the dimensionality of the data, or equivalently the number of retained 

principal components, is determined automatically as part of the Bayesian inference 

procedure. The estimate of the data’s dimensionality acts as a surrogate for estimating the 

amount of regularization of the data that is required to give a good estimation of the data 

covariance matrix.

The generative model used in Bayesian PCA is (Bishop (1999)):

(7)

where  is the N × Tcov matrix of the MEG data from a time window of interest and that has 

been demeaned over the time window, G is a N × Q matrix containing the Q principal 

component sensor maps, v is a Q × Tcov matrix of latent variables, and є ~ N(0, σ2I) is the 

noise. Importantly, the prior on the latent variables vq is a zero mean Gaussian with unity 

variance:
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(8)

and the prior on G is an automatic relevance determination (ARD) prior:

(9)

where the precision αq determines the extent to which component q is retained. For 

example, if αq is inferred with a large value, then the corresponding principal component, 

Gq, will tend to be small and that component will effectively not be retained. The number of 

αq ’s that are not inferred to be large will correspond to the number of retained components, 

or the dimensionality of the data. ARD priors were originally devised in the field of Neural 

Networks (MacKay (1995)), and have been used in other neuroimaging applications 

(Woolrich et al. (2004); Behrens et al. (2007); Woolrich et al. (2009)).

The remaining parameters have broad, noninformative priors:

(10)

(11)

where Γ is a Gamma distribution, τ = σ−2, and a0 = b0 = 0.001.

We note that the model used for Bayesian PCA in equation 7 can be considered as a special 

case of the model used in Factor Analysis. In PCA the error, є, is assumed to be isotropic 

Gaussian noise, whereas in Factor Analysis it is assumed to be anisotropic. However, the 

ability of PCA to do data reduction, or dimensionality estimation, is sufficient for the task in 

hand.

2.3.1 Variational Bayes Inference—The distribution we are interested in inferring 

upon is the posterior distribution . It is not possible to solve for this 

distribution analytically. Hence, Bishop (1999) shows how we can infer using a Variational 

Bayes (VB) approach. VB approximates the posterior distribution  with 

Q(G, v, αq, τ) by minimising the KL-divergence, or equivalently by maximising the 

variational free energy between them. The trick to making this tractable is to assume that the 

approximate posterior distribution, Q(G, v, αq, τ), has a factorised form:

(12)

where
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(13)

(14)

(15)

(16)

The update equations for the parameters describing the posterior distributions 

 derived using this VB approach are given in Bishop 

(1999).

In practise, we initialise the VB PCA using a traditional non-Bayesian PCA of full 

dimensionality (i.e. Q = N − 1 as the data is demeaned), and then iterate over the VB update 

equations until convergence. This typically takes less than 30 iterations and takes on the 

order of a minute to compute on a typical desktop PC. The estimation of the data covariance 

matrix derived from Bayesian PCA is then taken as:

(17)

where ). This estimate of Cy can be then be used in equation 3 to compute the 

beamformer weights.

2.3.2 Quantifying the dimensionality—We will now describe a way in which we can 

explicitly quantify the dimensionality inferred by the Bayesian PCA. However, it is 

important to stress that Bayesian PCA works without needing to do this as it is automatically 

downweighting the unsupported components in a soft manner. Instead, quantifying the 

dimensionality is useful as a post-hoc calculation to assess the performance of the approach, 

plus it can provide an indication of when regularisation is being used, and when the quality 

of the data covariance estimate may be under question.

There are typically two ways to estimate dimensionality, and these are to use the model 

evidence or to do hyperparameter thresholding. Here we use hyperparameter thresholding, 

where the relevant hyperparameters are the ARD hyperparameters α. The number of ARD 
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hyperparameters that pass the chosen threshold correspond to the approximate number of 

retained principal components (i.e. the VB PCA inferred dimensionality).

We perform this thresholding specifically on the posterior mean estimates of α, which are 

given by  at an appropriate level. To set the threshold we first note that the 

updates for the posterior distribution of αq are given as (Bishop (1999)):

(18)

(19)

The maximum value that μαq can take is when  which corresponds to 

when component q is completely excluded from the Bayesian PCA solution, and gives:

(20)

We then set the minimum value that μαq takes to be equal to μαq′ where q′ corresponds to 

the largest principal component in the Bayesian PCA solution. Finally, we set the threshold 

halfway between the minimum and maximum values for μαq, and estimate the dimension of 

the Bayesian PCA solution as:

(21)

2.4 Hard Truncation Approaches

We compare the Bayesian PCA approach to two different methods for doing adaptive hard 

truncation of the eigenspectrum. These can both be considered PCA based methods as they 

first compute the PCA decomposition (or eigen-decomposition or Singular Value 

Decomposition) and then threshold the eigenspectrum, passing through only the components 

with the largest eigenvalues. However, the two methods differ as to how the eigenspectrum 

threshold is chosen.

2.4.1 Assuming known noise variance—This approach thresholds the 

eigenspectrum at the point where the sum over the sub-threshold eigenvalues equates to the 

variance of the sensor noise. Using an SVD, A = USV, the vector s = diag(S) contains the 

eigenvalues in ascending order. The cut-off, t, is then chosen as the lowest value of t for 

which:
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(22)

where  is the known variance of the noise. Eigenvalues with values below the 

dimensionality cut-off are set to zero, giving a new eigenspectrum  The regularised data 

covariance matrix estimate is then given by 

This approach does suffer from the limitation that we do not generally know the variance of 

the noise in real data. However, we can at least use this approach on simulated data where 

the variance is known. We will refer to this approach as “PCA known var” in the results.

2.4.2 Fitting the null eigenspectrum—An alternative way to estimate dimensionality 

is to observe where the data eigenspectrum plot meets the null eigenspectrum, i.e. the 

spectrum of expected eigenvalues the additive white noise in the model. The null 

eigenspectrum is found by taking the quantiles of the null distribution g of eigenvalues ν, 

given by (Beckmann and Smith (2004)):

(23)

where  The parameter γ is the ratio of sensors over timepoints (≤ 1); this 

essentially determines the steepness of the null eigenspectrum plot. These values can be 

estimated from the data eigenspectrum by ignoring the largest (signal) eigenvalues and using 

a least-squares fit to match the two spectra (while simultaneously fitting the overall noise 

variance, ). In practice it is better to fit γ than calculate it from the data size because this 

can account for temporal and spatial correlation (i.e. estimate the number of independent 
timepoints and sensors), and it is this approach that we take here.

To ensure that we ignore the largest (signal) eigenvalues we ignore the top 3/4 of the 

eigenspectrum, and fit the model to the remaining eigenspectrum. We set the dimensionality 

by finding the last data eigenvalue that exceeds the corresponding null eigenvalue by at least 

10%. Eigenvalues with values below the dimensionality cut-off are set to zero, giving a new 

eigenspectrum  The regularised data covariance matrix estimate is then given by 

 where  is the noise variance estimated from the eigenspectrum fit.

Figure 7 illustrates this method being fitted to eigenspectrums from the 37 dipole simulated 

data used in this paper. We will refer to this approach as “PCA fit spectrum” in the results.

3 Simulated Data

3.1 Methods

The simulated data was prepared in Matlab with the same positioning of the head with 

respect to the MEG scanner (and the same subsequent forward model) as a real MEG dataset 
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acquired using the 306-channel whole head Elekta-Neuromag MEG system as described in 

section 4.1 with a sampling rate of 200Hz. We consider two different simulations. First, a 

low dimensional setup with just three dipolar sources located in the occipital cortex as 

shown in figure 1(a). Second, a more realistic high dimensional setup with 36 dipoles 

arranged in a grid across the brain, with a 37th dipole more posterior to the grid in the 

occipital cortex, as shown in figure 1(b). In both cases we consider one of the 3 or 37 dipoles 

as the “signal dipole”, i.e. as the dipole or signal of interest. This is taken as being the most 

posterior of the 3 or 37 dipoles (shown in yellow in figure 1). The other 2 or 36 dipoles 

(shown in red in figure 1) are consider as confounds, or brain noise. These represent the 

artefacts and ongoing spontaneous neuronal activity expected in real MEG data, and will 

produce correlated noise in the sensors. Subsequently, the beamformer statistics (e.g. the 

correlation with the true signal) are calculated for just the signal dipole. The estimated 

(regularised or otherwise) data covariance matrix will always be exactly the same regardless 

of which dipole we treat as the signal dipole. The chosen signal dipole is therefore 

representative of the impact that different data covariance matrix estimation approaches can 

have on the beamformer.

The source time courses were generated from a series of pseudo-random numbers with equal 

power in the range of 15-25 Hz. The resulting dipole time course will therefore have an 

expected correlation with each other of zero. Random noise was added with bandwidth 

equivalent to that of the source. Ten different realisations of simulated data were used and 

the beamformer statistics calculated across them.

LCMV beamformers with a bandwidth of 15-25Hz were then applied to each realisation of 

the simulated data, using five different approaches to estimate the data covariance matrices. 

Two of these approaches correspond to traditional beamformers using equation 6 with two 

different regularisation parameters, μ = {0, 20}. The “Bayes PCA” approach corresponds to 

using the proposed Bayesian PCA approach as in equation 17. The “PCA fit 

spectrum”approach corresponds to the hard truncation method that cuts-off the 

eigenspectrum at the point where the data eigenspectrum plot meets the fitted null 

eigenspectrum and is described in section 2.4. The “PCA known var”approach corresponds 

to the hard truncation method that cuts-off the eigenspectrum at the point where the sum 

over the sub-threshold eigenvalues equates to the variance of the noise and is described in 

section 2.4.

In order to investigate the performance of the different beamformers, time windows of 

different size are considered with Tcov varying from 2 − 80secs. In each case, the correlation 

coefficient between the original simulated source time course and the beamformer-

reconstructed source time courses are plotted as a function of Tcov. We also plot the 

localisation error, which is calculated as the distance between the known dipole location and 

the peak correlation between the original simulated source time course and the beamformer-

reconstructed source time courses. In order to investigate the effects of regularisation on the 

spatial resolution, we also plot the Full Width Half Maximum (FWHM) for both the 

projected power of the beamformer (in the form of the pseudo Z-statistics given in equation 

4), and for the correlation coefficient between the original simulated source time course and 

the beamformer-reconstructed source time courses, as a function of Tcov. The FWHM was 
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estimated by fitting a Gaussian distribution to the 1-D profile (taken in the x-direction, i.e. 

left to right in MNI coordinates, passing through the simulated dipole location) of the 

corresponding spatial map and setting FWHM ≈ 2.35σFWHM, where σFWHM is the standard 

deviation of the fitted Gaussian distribution.

3.2 Results

Figure 2a shows the results of the simulated data with three dipoles (i.e. a true 

dimensionality of three) showing the effects of decreasing the window size, Tcov, (number of 

timepoints available for estimating the data covariance matrix) when using different types of 

regularisation. Unlike the unregularised beamformer (μ = 0), the regularised beamformers (μ 
= 20) preserve the correlation between simulated and reconstructed time courses across the 

range of window sizes. As in Brookes et al. (2008) these simulations imply that if a 

regularised beamformer is used, it is possible to estimate accurate time courses even when 

using smaller time windows than those required for equivalent accuracy in an unregularised 

beamformer.

However, as in Brookes et al. (2008) the extra temporal accuracy in the reconstructions with 

the regularised beamformer comes at the cost of spatial resolution. Figures 2b,c show the 

Full Width Half Maximum (FWHM) for both the pseudo Z-statistics, and for the correlation 

coefficient between the original simulated source time course and the beamformer-

reconstructed source time courses, as a function of window size. This is further illustrated in 

figures 3 and 4, which show the spatial maps of the pseudo z-stats, and correlation between 

simulated and reconstructed time courses, respectively.

In contrast to the traditional, non-adaptive regularisation approaches the Bayesian PCA 

approach is able to maintain good correlation between the simulated and reconstructed time-

courses when large time windows are used, without compromising spatial resolutions, but 

can then adapt automatically to maintain this good correlation when small time windows are 

used (figures 2a-c, 3, 4).

We repeated the simulations on a high dimensional setup, with 37 dipoles arranged across 

the brain, as shown in figure 1(b). As figures 6, 8 and 9 demonstrate, the finding from the 

low dimensional simulations are broadly repeated in this more realistic and challenging 

scenario.

Figure 5 illustrates the way in which the traditional regularisation approaches boost the 

diagonal to give a more stable data covariance estimate, and the way in which the Bayesian 

PCA approach does the same adaptively. Correspondingly, as shown in figures 2d and 6d, as 

the amount of information available to estimate the data covariance matrix decreases, the 

Bayesian approach automatically infers that the number of components that can be 

supported by the evidence in the data (i.e. the dimensionality as estimated by equation 21) 

decreases also. In the low dimensional simulation (figure 2d) when Tcov is low only one 

component is inferred, and increases to the correct number of components (3) as Tcov 

increases. In the high dimensional simulation (figure 6d) the estimated dimensionality 

gradually increases as Tcov increases.
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Figures 2 and 6 also show the results of the two hard truncation approaches. These are the 

“PCA known var” approach, which truncates the eigenspectrum at the point where the sum 

over the sub-threshold eigenvalues equates to the variance of the noise; and the “PCA fit 

spectrum” approach, which truncates where the data eigenspectrum plot meets the null 

eigenspectrum. These methods tend to perform better than the no regularisation and μ = 20 

regularisation approaches, in the same manner as the Bayesian PCA approach. However, 

they are not as good as the Bayesian PCA approach.

In the 37 dipole simulation (figure 6) the “PCA known var” and “PCA filter spectrum” do 

not adapt as flexibly as the Bayesian PCA approach as the number of time points vary. In 

particular, the “PCA fit spectrum” approach appears to have difficulty in estimating the 

dimensionality reliably as the number of time points decrease, and does not regularise 

enough. Presumeably this is in part due to difficulty in fitting the null spectrum as the 

number of time points decrease. This is demonstrated in figure 7 where the shorter 8 second 

eigenspectrum has a more noisy, less well defined elbow than the 80 second eigenspectrum. 

Another consideration is that the best dimensionality, which balances goodness of fit with 

model complexity (as in a Bayesian approach), does not necessarily correspond to the elbow 

in the eigenspectrum.

The “PCA known var” approach appears to over-regularise as the number of time points 

increase, estimating dimensionalities that are too low. This is probably because a 

considerable number of the components (due to the 36 confound dipoles) have eigenvalues 

that are below the assumed known sensor noise variance, and are being erroneously cut-off.

3.2.1 Varying the Signal to Noise Ratio—Figures 10 and 11 show what happens for 

the 37 dipole case (i.e. one signal dipole and 36 confound or “brain noise” dipoles) as we 

vary the signal to noise ratio (SNR) for a short time window of 8 secs and a long time 

window of 80 secs respectively. Here the SNR corresponds to the amplitude of the signal 

dipole to the amplitude of each of the 36 brain noise dipoles. Note that the SNR used in 

figures 6 corresponds to a log(SNR) of zero in figures 10 and 11.

For the long time window (figure 11) over the range of SNRs used, the Bayesian PCA, 

“PCA fit” and no regularisation methods perform in a similarly well. However, the fixed 

regularisation approach (μ = 20) can be seen to over-regularise at high SNR and under-

regularise at low SNR.

For the short time window (figure 10) over the range of SNRs used, the Bayesian PCA 

method performs the best. The no regularisation method (μ = 0) performs considerably 

worse than the other methods with almost zero correlation with the known true signal time 

course, and a large localisation error.

For the long time window figure 11)d shows that at low SNR the dimensionality approaches 

the true dimensionality of approximately 37. Note that althought the Bayesian PCA 

approach has an apparent dimensionality slightly less than this, the Bayesian PCA approach 

does not actually use this threshold as it is effectively using a soft threshold. As the SNR 

increases the dimensionality decreases to one for all of the adaptive methods. Presumeably 
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this is because the signal dipole becomes strong enough to swamp the very small noise 

dipoles, which therefore become indistinguishable from Gaussian noise at the sensor level.

4 Real MEG Data

4.1 Methods

4.1.1 Data acquisition—The recordings were performed on a single subject using a 306 

channel Elekta Neuromag system comprising 102 magnetometers and 204 planar 

gradiometers. MEG data were recorded at a sampling rate of 1000 Hz with a 0.1 Hz high 

pass filter. Before acquisition of the MEG data, a three-dimensional digitizer (Polhemus 

Fastrack) was used to record the patient’s head shape relative to the position of the 

headcoils, with respect to three anatomical landmarks which could be registered on the MRI 

scan (the nasion, and the left and right preauricular points). A structural MRI was also 

acquired.

4.1.2 Experimental paradigm—The task contained 360 trials split evenly into eight 

blocks. Within each block, 45 trials took place in a pseudo-random order. Fifteen of the trials 

per block always involved the presentation of a motorcycle image, while the 30 other trials 

involved the presentation of a face. Within each trial following the presentation of a fixation 

cross, participants were presented with 400 to 600 ms of a blank grey screen followed 

immediately by the 100 ms presentation of an image of either a face or a motorcycle. During 

image presentation, participants were instructed to maintain their gaze where the fixation 

cross formerly was (i.e., at the centre of the image). Additionally, participants were 

instructed to avoid head or body movement for the duration of the task, and to avoid eye 

blinks during the presentation of a face or motorcycle image.

4.1.3 Data Processing—External noise was removed using Signal-Space Separation 

(SSS) (Taulu et al. (2005)) and the data was down-sampled to 200 Hz, using the MaxFilter 

software (Elekta-Neuromag). After uploading to SPM8 http://www.fil.ion.ucl.ac.uk/spm, the 

continuous data was epoched for just the motorbike trials, the mean base-line from 100 ms 

to 0 ms post-stimulus onset was removed, and a single shell forward model was calculated 

using the SPM8 and Fieldtrip (http://www.ru.nl/neuroimaging/fieldtrip) toolboxes.

LCMV beamformers with a wide-band from 1-48Hz, and a time window from 50 ms to 150 

ms post-stimulus onset, were used to focus on the event related field (ERF) around 100ms. 

We then applied the same four beam-former approaches used on the simulated data. In order 

to investigate the performance of the different beamformers as the amount of data available 

to compute the data covariance matrix varies, the number of trials of data was varied from 

between 4 and 60 trials. Cross-validation was used whereby 10 different “datasets” 

consisting of different random subsets of trials are used for each subset size (note that there 

are 120 motorbike trials in total). In each case, the correlation coefficient between the 

beamformer-reconstructed source time courses and the “gold standard” time course obtained 

from all 120 trials are plotted as a function of Tcov.
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4.2 Results

Figure 12 and 13 shows the results on real MEG data for a location in the lateral occipital 

cortex. The cluster shown in figure 12 is the only one that was above the chosen (non-

statistical) threshold in the whole brain at this post-stimulus time point. As we would expect 

figure 13b shows that for large numbers of trials (greater than about 30) the unregularised 

beamformer (μ = 0) is performing better on average than the traditional regularised 

beamformers (μ = 20). As the number of trials is reduced, the traditional regularised 

beamformers (μ = 20) then start to perform better than the unregularised beamformer. 

However, across the full range of trial numbers the Bayesian PCA approach maintains good 

performance.

Figure 13c illustrates the way in which the Bayesian PCA approach is able to adapt to the 

amount of information available to estimate the data covariance matrix, by inferring less 

dimensions (principle components) as the amount of data decreases. This corresponds to 

adaptation in the amount of regularisation being applied in the same manner as was 

demonstrated on the simulated data. It should be noted that the actual full dimensionality of 

the preprocessed data being inputted into the beamformer is approximately 64, due to the 

effects of the SSS Maxfilter. This estimation of the dimensionality of the data covariance 

matrix inference also provides a method for determining when the quality of the data 

covariance estimate may be under question. For example, in figure 13c the estimated 

dimensionality of the Bayesian PCA approach starts to drop away quickly below the full 

dimensionality of the data (64) as the number of trials gets below about 30 trials. This serves 

as indication that the quality of the estimation of the data covariance matrix is being 

compromised, and although the Bayesian PCA approach adaptive regularisation is stepping 

in to help with this, consideration might still be given to the size of the time-frequency 

window (and number of trials) being used.

Figure 14 and 15 shows the results on real MEG data for a location in the medial occipital 

cortex. Again, the cluster shown in figure 14 is the only one that was above the chosen (non-

statistical) threshold in the whole brain at this post-stimulus time point. This is an example 

of where the regularised beamformer (μ = 20) does not perform as well as the unregularised 

beamformer (μ = 0) for large trial numbers. This is likely to be due to the presence of 

dissimilar dipole sources in the spatial neighbourhood. However, the performance of the 

Bayesian PCA approach is still maintained across the full range of trial numbers.

In both figures 13 and 15 there are apparent improvements in the regularised Bayesian PCA 

approach compared to the unregularised method as the number of trials drops below about 

60. However, big benefits only start to appear when the estimated dimensionality of the 

Bayesian PCA estimated dimensionality starts to drop away quickly as the number of trials 

gets below about 30.

5 Discussion

We have proposed an adaptive solution to the problem of having insufficient data to reliably 

estimate the data covariance matrix in MEG beamforming. Bayesian PCA is used to provide 

a data-driven estimate of the data covariance matrix that automatically trades-off between 
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the spatial resolution and the SNR of the beamformer output. The output from the Bayesian 

PCA can also be used to calculate the implied dimensionality of the data,i.e. the number of 

effectively retained components. This can also be used to indicate when the quality of the 

data covariance estimate maybe under question.

Figure 16 shows the log eigenspectrum of the real MEG data using the full number of 

motorbike trials. This shows that the Elekta-Neuromag MEG data, after it has been 

processed with the Maxfilter Signal Space Separation (SSS) method has dimensionality 

(rank) of approximately 64, i.e. there are 64 non-zero eigenvalues. This is confirmed in 

figure 13c where the proposed Bayesian PCA method find a dimensionality of almost 60. A 

dimensionality of 64 is approximately the dimensionality of any general MEG data after it 

has been processed using the SSS Maxfilter using the default settings. While this indicates 

that there are approximately 64 components in the data, these are not all going to be related 

to the stimulus. For example, some will relate to artefacts (e.g. muscle-related, eye-

movement) and ongoing spontaneous neuronal activity in the MEG data. Furthermore, in 

this paper we are beamforming before epoch averaging. Many of the components will not 

survive epoch averaging and will therefore not be apparent in the Event-Related Field (ERF) 

analysis being shown in figures 12, 13, 14 and 15.

Non-probabilistic PCA, or eigenspace based beamformers (Sekihara et al. (2002, 2006)), 

including Multiple signal classification (MUSIC) (Vrba and Robinson (2000)) have been 

proposed previously. These assume that signal and noise components are uncorrelated and 

live in separate subspaces. They use eigenspace decompositions and then identify those 

components that are signal and those that are noise. In this paper we are not looking to 

classify the components. Instead we are using a generative model of PCA, in conjunction 

with Bayesian inference, to adapt to the number of components that can be well-estimated in 

the data. This PCA decomposition is then turned into to a regularized estimate of the data 

covariance matrix, where the amount of regularization inversely relates to the number of 

components that can be well-estimated.

To our knowledge this is the first time that the use of probabilistic Bayesian PCA for data 

covariance estimation has been demonstrated in the context of MEG beamforming. A related 

probabilistic regularised estimation of the covariance matrix has been used previously as part 

of a method for analysing MEG and EEG data (Nagarajan et al. (2007, 2006)). In particular, 

in Nagarajan et al. (2007) they propose an interesting generative modelling approach that 

uses baseline periods to learn noise components (or “interferences”), thereby allowing them 

to partition noise from signal components in the time period of interest. In contrast, our 

Bayesian PCA decomposition combines noise and signal components in the PCA model 

without distinguishing between them. Furthermore, in Nagarajan et al. (2007,2006) they do 

not demonstrate the use of their approaches in the context of beamforming.

An alternative Bayesian approach to inferring the data covariance matrix in the context of 

beamforming was proposed in Wipf and Nagarajan (2007). There they model the data 

covariance matrix not by using a Bayesian PCA, but instead by using a generative model 

corresponding to equation 1, and by effectively using ARD priors on the dipole timecourses, 

m(ri). Subsequently, the model has similarities to the multiple sparse prior (MSP) approach 
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of Friston et al. (2008). However, in MSPs the model is inverted directly to infer m(ri), 

whereas in Wipf and Nagarajan (2007) the model is inferred upon to estimate the data 

covariance matrix, which is subsequently used in a beamformer to estimate m(ri).

As with the approach proposed in this paper, Wipf and Nagarajan (2007) implicitly infer the 

complexity (dimensionality) as part of the solution, allowing components to be pruned 

adaptively based on the amount of information in the data made available. However, in Wipf 

and Nagarajan (2007) the components are pruned from an assumed known/fixed basis set 

corresponding to the lead field matrix. In contrast, in Bayesian PCA the components are 

learned from the data itself. This means that the approach of Wipf and Nagarajan (2007) has 

an advantage in that it can also deal with the well-established problem posed by correlated 

sources in traditonal beamforming (Veen et al. (1997)). In contrast the Bayesian PCA 

method is no different to conventional beamformers, in that it will suffer from problems with 

highly correlated sources to the same extent. This phenomenom has been characterised 

elsewhere (Veen et al. (1997)) and a potential solution has also been proposed for 

conventional beamformers that could be also used in conjunction with the method proposed 

in this paper (Brookes et al. (2007)). However, Bayesian PCA maintains one of the potential 

benefits of traditional beam-forming, in that it is less dependent on, and is not constrained to, 

a complete generative model describing the MEG data as a function of dipole sources and 

their corresponding lead fields.Comparing these approaches is beyond the scope of this 

paper, and an interesting approach to consider for the future is one that combines these two 

approaches together, and their relative strengths, into a single method.
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Figure 1. 
Locations of dipoles in simulated data. Location at which the beamformer statistics are 

calculated is shown in yellow, other dipoles are shown in red. (a) Low dimensional data with 

three dipoles, and (b) High dimensional data with 37 dipoles.
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Figure 2. 
Simulated data with three dipoles (i.e. a true dimensionality of three) showing the effects of 

decreasing the number of timepoints available for estimating the data covariance matrix 

when using different types of regularisation. At each number of timepoints 10 realisations of 

simulated data are used. The coloured lines show the mean, and the error bars indicate the 

standard deviation, over the realisations. (a) Correlation coefficient between the original 

simulated source time course and the beamformer-reconstructed source time courses. (b) 

FWHM of the beamformer’s pseudo Z-statistics. (c) Localisation error using peak 

correlation between the original simulated source time course and the beamformer-

reconstructed source time courses. (d) Estimated dimensionality of the data.
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Figure 3. 
Pseudo z-stat spatial maps for the simulated data with 3 dipoles (i.e. a true dimensionality of 

3) and Tcov =10secs [top] and Tcov =80secs [bottom]. Maps have been thresholded to show 

the top 10th percentile.
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Figure 4. 
Spatial maps showing correlation with the true signal of interest, for the simulated data with 

3 dipole (i.e. a true dimensionality of 3) and Tcov =10secs [top] and Tcov =80secs [bottom]. 

Each dipole location is marked with a blue square, the most posterior dipole was the one 

simulated with the true signal of interest. Maps have been thresholded to show the top 5th 

percentile.
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Figure 5. 
Data covariance matrices for the simulated data with 3 dipoles and Tcov =10secs [top] and 

Tcov =80 secs [bottom].
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Figure 6. 
Simulated data with 37 dipoles (i.e. one signal dipole and 36 confound or “brain noise” 

dipoles) showing the effects of decreasing the number of timepoints available for estimating 

the data covariance matrix when using different types of regularisation. At each number of 

timepoints 10 realisations of simulated data are used. The coloured lines show the mean, and 

the error bars indicate the standard deviation, over the realisations. (a) Correlation 

coefficient between the original simulated source time course and the beamformer-

reconstructed source time courses. (b) FWHM of the beamformer’s pseudo Z-statistics. (c) 

Localisation error using peak correlation between the original simulated source time course 

and the beamformer-reconstructed source time courses. (d) Estimated dimensionality of the 

data.
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Figure 7. 
Eigenspectrums (in red) from the 37 dipole simulation data with the number of timepoints 

corresponding to 8 secs (left) and 80 secs (right). The eigenspectrum is only of rank 160 

(rather than the full rank of 306, i.e. the number of sensors) for the 8 secs case, as there are 

only 160 datapoints available in 8secs with a frequency range of 15-25 Hz. Also shown is 

the “PCA fit spectrum” method, which estimates the dimensionality at the point at which the 

eigenspectrum meets the null eigenspectrum. The null eigenspectrum fit (dashed blue line) is 

estimated from the bottom quarter of the eigenspectrum (thick green line), and gives a cut-

off (blue cross) at the point where this deviates from the data eigenspectrum. Also shown is 

the cut-off for the “PCA known noise” method (black cross), which cuts-off when the 

eigenvalues below this point sums to the known noise variance; and the dimensionality of 

the Bayesian PCA method (magenta cross), although the Bayesian PCA does not actually do 

a hard cut-off in practise.
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Figure 8. 
Pseudo z-stat spatial maps for the simulated data with 37 dipoles (i.e. a true dimensionality 

of 37) and Tcov =10 secs [top] and Tcov =80secs [bottom]. Maps have been thresholded to 

show the top 20th percentile.
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Figure 9. 
Spatial maps showing correlation with the true signal of interest, for the simulated data with 

37 dipoles (i.e. a true dimensionality of 37) and Tcov =10secs [top] and Tcov =80secs 

[bottom]. Each dipole location is marked with a blue square, the most posterior dipole was 

the one simulated with the true signal of interest. Maps have been thresholded to show the 

top 5th percentile.

Woolrich et al. Page 26

Neuroimage. Author manuscript; available in PMC 2016 June 06.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 10. 
Simulated data with 37 dipoles (i.e. one signal dipole and 36 confound or “brain noise” 

dipoles) showing the effects of changing the ratio of the amplitude of the signal dipole to the 

brain noise dipoles for a short time window of 8 secs. Note that the SNR used in figure 6 

correspond to a log(SNR) of zero. At each SNR 10 realisations of simulated data are used. 

The coloured lines show the mean, and the error bars indicate the standard deviation, over 

the realisations. (a) Correlation coefficient between the original simulated source time 

course and the beamformer-reconstructed source time courses. (b) FWHM of the 

beamformer’s pseudo Z-statistics. (c) Localisation error using peak correlation between the 

original simulated source time course and the beamformer-reconstructed source time 

courses. (d) Estimated dimensionality of the data.
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Figure 11. 
Simulated data with 37 dipoles (i.e. one signal dipole and 36 confound or “brain noise” 

dipoles) showing the effects of changing the ratio of the amplitude of the signal dipole to the 

brain noise dipoles for a long time window of 80 secs. Note that the SNR used in figure 6 

correspond to a log(SNR) of zero. At each SNR 10 realisations of simulated data are used. 

The coloured lines show the mean, and the error bars indicate the standard deviation, over 

the realisations. (a) Correlation coefficient between the original simulated source time 

course and the beamformer-reconstructed source time courses. (b) FWHM of the 

beamformer’s pseudo Z-statistics. (c) Localisation error using peak correlation between the 

original simulated source time course and the beamformer-reconstructed source time 

courses. (d) Estimated dimensionality of the data.
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Figure 12. 
Real MEG data. Spatial map of thresholded signal (in arbitrary units) projected by the 

unregularised beamformer for the full set of motorbike trials at t = 0.96 secs post-stimulus 

onset.
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Figure 13. 
Real MEG data showing the effects of decreasing the number of trials (and therefore 

timepoints) available for estimating the data covariance matrix when using different types of 

regularisation. (a) Time course of the signal projected by the unregularised beamformer for 

the full set of motorbike trials at the location shown by the cross-hairs in figure 12. Cross-

validation was then used in which subsets of the trials were beamforlat. For each subset size, 

10 different “datasets” consisting of different random sets of trials were beamformed. (b) 

The correlation coefficient between the beamformer-reconstructed source time courses and 

the “gold standard” time course (obtained from all 120 trials, by averaging over the Bayes 

PCA and μ = 0 solution) are plotted as a function of the number of trials. (c) Estimated 

dimensionality as a function of the number of trials. Error bars are approximate standard 

errors of the mean.
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Figure 14. 
Real MEG data. Spatial map of thresholded signal (in arbitrary units) projected by the 

unregularised beamformer for the full set of motorbike trials at t = 0.128 secs post-stimulus 

onset.
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Figure 15. 
Real MEG data showing the effects of decreasing the number of trials (and therefore 

timepoints) available for estimating the data covariance matrix when using different types of 

regularisation. (a) Time course of the signal projected by the unregularised beamformer for 

the full set of motorbike trials at the location shown by the cross-hairs in figure 14. Cross-

validation was then used in which subsets of the trials were beamformed. For each subset 

size, 10 different “datasets” consisting of different random sets of trials were beamformed. 

(b) The correlation coefficient between the beamformer-reconstructed source time courses 

and the “gold standard” time course (obtained from all 120 trials, by averaging over the 

Bayes PCA and μ = 0 solution) are plotted as a function of the number of trials. (c) 

Estimated dimensionality as a function of the number of trials. Error bars are approximate 

standard errors of the mean.
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Figure 16. 
Eigenspectrum of the SSS Maxfilter Elekta-Neuromag MEG data calculated using all 

motorbike trials. Note that although there are 306 sensors, the default SSS Maxfilter settings 

always output data with an approximate dimensionality (rank) of 64.
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