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Abstract

Despite widespread interest in neural mechanisms of decision-making most investigations focus 

on decisions between just two options. Here we adapt a biophysically plausible model of decision-

making to predict how a key decision variable–the value difference signal–encoding how much 

better one choice is than another, changes with the value of a third, but unavailable, alternative. 

The model predicts surprising failures of optimal decision-making – greater difficulty choosing 

between two options in the presence of a third very poor, as opposed to very good, alternative. The 

prediction was borne out, first, by investigation of human decision-making and, second, functional 

magnetic resonance imaging-(fMRI)-based measurements of value difference signals in 

ventromedial prefrontal cortex (vmPFC); the vmPFC signal decreased in the presence of low value 

third alternatives and vmPFC effect sizes predicted individual variation in sub-optimal decision-

making in the presence of multiple alternatives. The effect contrasts with that of divisive 

normalization in parietal cortex.

Introduction

Despite the ubiquity of value representations in the brain1, but there is special interest in 

vmPFC and intraparietal sulcus (IPS) because several lines of evidence suggest they use 

value information to guide a decision process2-6. Not only do these areas carry information 

about reward expectation3,7-15, but vmPFC, and sometimes IPS, also carry “value 

difference” signals reflecting the difference in value between chosen and unchosen options 

during decision-making in a way that suggests value comparison between options is taking 

place3,5,9,16-19.

Despite broad interest in the neural mechanisms of decision-making, little is known about 

the comparison process when there are multiple, and not simply two, alternatives to choose 

between. One important study of visually-guided decisions (evidence accumulation 
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processes in value-guided and visually-guided decisions share many features3,17,20,21) 

explicitly compared multi-alternative and binary visual decisions but the degree of evidence 

for only one of the two/four possible choices was manipulated on each trial22. By contrast, 

in the present study, we investigate decisions where the value related to each of several 

potential options is parametrically varied on each decision so that the interactions between 

neural representations of several potential choices can be investigated.

There are four parts to the investigation. First, we extend a biophysical model of decision-

making by competition through mutual inhibition23,24 to predict how the value difference 

signal for two options changes as a function of the value of a third distracting alternative that 

cannot itself be selected. We then compared model predictions with human choices and 

neural activity in vmPFC and the medial IPS region (MIP). Human MIP corresponds to 

macaque MIP25 and is concerned with value-guided decisions3,25 and evidence 

accumulation26 when choices are made with the hands. Finally, we explored the relationship 

between our findings and the influential divisive normalization model of multi-alternative 

decision-making27.

Results

Biophysical model of multiple option decision-making

We extended a biophysical cortical attractor network model24 for making decisions between 

two options which has previously predicted value difference signals in vmPFC and IPS 

when there are two choices3,28. Our model was similar but included three rather than two 

populations of excitatory pyramidal neurons that represented potential choices (Fig.1a). 

Each population’s neurons received an input proportional to the value of one option. Just as 

in the original model, there was strong recurrent excitation between neurons within 

populations but interneuron-mediated inhibition between populations. The inhibition 

between populations instantiates a competition that leads to an attractor state in which one 

single population has a high firing rate, and the others low firing rates; the corresponding 

option is thus ‘chosen’ by the network. High value options are more likely to be chosen by 

the network because their representative population receives stronger external excitatory 

input.

We examined how the comparison between two options was affected by the presence of a 

third alternative in a manner that would generate predictions of behavior and brain activity. 

Obviously, if the third alternative has the highest value, then it might itself be selected. In 

those cases behavior will be silent as to how the first two options were compared. If the third 

option is always lowest in value then it will have little parametric range and its value is 

easily confounded with those of the first two options. We therefore examined the impact of a 

third option that might be considered a transitorily available “distractor” – an option with a 

potential value but which could not itself be chosen. To ensure that it could briefly be 

considered a potential alternative, the identity of the distractor was only revealed shortly 

after (100ms) all three options were presented. Therefore, initially, all three populations of 

neurons, representing the high and low value available options (PHV, PLV respectively; 

figure 1a) and the distractor (PD;Fig.1a) become active and inhibit one another indirectly 

through an inhibitory population (PI; Fig.1a). The distractor option input was removed 100 
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ms after presentation and the inputs for the other two choosable options were switched off 

800ms after presentation (Online Methods). We sampled the activity of PHV and PLV in the 

period 700-1200 ms after presentation to estimate which option would be most active, and 

therefore likely to be chosen, in a speeded reaction time (RT) decision. Model parameters 

were selected such that the frequency of choices between the two available options reflected 

subjects’ performance in the task described below (fig 1b).

From here on we refer to the values of the two available options the model could select as 

high value (HV) and low value (LV) options, and to the third option as the distractor (D). 

We show that what should be an irrelevant value difference, HV−D (Online Methods), has 

an impact on the size of the signal representing the key value difference for decision-making 

– HV−LV – in the biophysical model, human behavior, and brain activity.

We focused (Fig.1c, Supplementary Information SI.1) on the difference in PHV and PLV 

population activity levels because it: 1) is the key decision variable determining likelihood 

of HV being chosen – an accurate choice of HV is more likely when the PHV-PLV difference 

is large; 2) may correspond to the HV−LV value difference signal recorded from vmPFC 

when decisions are made correctly3,5,9,16-19,29. We look for this signal and the irrelevant 

value difference HV−D in the last part of our investigation and so we ensured HV−LV and 

HV−D shared less than 25% of their variance in the set of options we gave the network. 

Signals with similar levels of shared variance are separable in fMRI data9.

We carried out our test by regressing the PHV-PLV population activity difference onto HV

−D – the irrelevant relative difference in value between an available option and distractor – 

and found a negative relationship even when the regression model included other factors 

(HV−LV and HV+LV, SI.1); PHV-PLV population difference, the signal in favor of optimal 

choice, decreased as distractor value decreased (i.e. HV−D increased). The effect was even 

more prominent in trials when HV−LV was small (Fig.1c). We examined HV−D because, 

like HV−LV, it is a value difference and so it is feasible to look for a corresponding value 

difference signal in brain activity in later parts of the investigation. It is, of course, possible 

to carry out the analysis by regressing PHV-PLV onto the absolute distractor value – D (SI.2) 

– but the inference remains the same: the PHV-PLV signal difference decreased as distractor 

value decreased. To see how the effect emerges, the average PHV-PLV firing activities at two 

different values of D are also shown (Fig.1.d).

The reason for the effect became apparent when inhibitory interneuron activity was 

regressed onto HV−D (Fig.1e); there was less inhibitory interneuron activity when HV−D 

was higher (the relative value of D was lower). In other words, low value distractors lead to 

less inhibition between populations, which in turn lead to PLV population activity being 

closer to, and sometimes exceeding, PHV population activity during the time period when 

network activity first makes non-random decisions (SI.2). This will sometimes lead to LV 

rather than HV being chosen when the relative value of D is lower. When there is increased 

inhibition, it has a bigger impact on PLV because it is more likely to ensure PLV’s activation 

level falls to a point where it can no longer exert any competitive effect against PHV. It is 

also noted that the effect of HV−D on inhibitory activity changed from negative to positive 

after 800 ms. Since the competition was resolved more quickly with larger initial inhibitory 
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activity in cases when D was large, the overall activities of PHV and PLV also dropped 

earlier in the trial, which in turn resulted in a smaller input to the inhibitory population at the 

end of the trial.

Such regression analyses of model activity can be linked to the regression analyses of fMRI 

data we report below. However, to predict human choice behavior we looked at the impact 

of D on which choice the model made – in other words we examined whether D had an 

impact on whether PHV or PLV entered the higher firing attractor model state. After an initial 

rise in both populations’ activity the model entered stable attractor states (Fig.1f). The initial 

rise in both populations is a consequence of the relatively high input scaling employed to 

best simulate human choice behavior (Fig.1b). It is consistent with the observation that 

activity in neural circuits for decision-making initially reflects the sum of choice values prior 

to reflecting value difference3. Analysis of attractor states revealed the model was more 

likely to make an erroneous LV choice when D was much lower in value than the choosable 

options (Fig.1g).

By examining the impact of transient value information that does not relate to a choosable 

option, we have devised the most challenging, and arguably most ecologically valid, test of 

distractor value impact on decision-making; if even transitorily available value information 

can disrupt the way in which a decision is made then the phenomenon we are investigating 

may be a prevalent one. However, we report an additional model simulation in Supplemental 

Modeling demonstrating that both model and behavioral effects, remain robust even when 

the distractor is a third choosable option. Obviously in this situation D must be lower in 

value than both HV and LV (or else D itself might be chosen).

Human multiple option decision-making

We designed a task to test the model’s predictions regarding the impact of an additional 

distracting alternative on decision-making. Participants made decisions between two options 

under two conditions on interleaved trials.

On two-option trials, participants saw two visual stimuli, choosing one with a spatially 

congruent keypad response (Fig.2). Their values corresponded to those used when testing 

the model in the first part of the investigation. On distractor trials, three options were 

presented. However, one of the options was indicated as a distractor 100ms after 

presentation so that decisions could only be made between the other two available options 

(Fig.2a). This allowed examination of how decisions were made between two options as a 

function of their difference in value (HV−LV), just as in the two-option trials, but now, in 

addition, we could also test how that comparison process was influenced by the presence of 

another alternative (D) that also varied in value. As with the biophysical model, by requiring 

participants to reject the distractor we could examine the impact of the full parametric range 

of alternative third values on HV−LV value comparison and decorrelated the third value, D 

(and HV−D), from HV and LV, HV−LV. Each distractor trial had a matched two-option 

trial with identical reward probabilities and magnitudes for the two available options. Any 

behavioral effects found only on distractor trials must therefore be due to distractor 

presence.
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We investigated the effect of distractor value on decision-making by performing a logistic 

regression analysis. We included value differences between the available options (HV−LV), 

their sum (HV+LV) and value difference between the higher value option and the distractor 

(HV−D) as regressors, plus an interaction regressor (HV−LV)(HV−D). Another regressor 

indexed two-option or distractor trial type.

Not surprisingly, subjects made more mistakes as HV−LV decreased (β=0.554, t20=13.737, 

p<0.001) but intriguingly the same was true when HV−D was large (β=−0.179, t20=−2.292, 

p=0.033; Fig.2c), suggesting it was more difficult to choose HV when the distractor had a 

much lower value. Finally, the interaction term (HV−LV)(HV−D) was also significant 

(β=0.279, t20=3.466, p=0.002), showing that the effect of HV−D causing inaccurate 

decisions diminished when HV−LV was larger. Subjects were less accurate in distractor 

than two-option trials (β=−0.081, t20=−2.455, p=0.023). In SI.3 we show that the HV−D 

effect was only present on distractor and not on two-option trials. SI.4 and SI.5 present 

complementary analyses and alternative regression models of both human behavior and of 

biophysical model activity. In summary, although the distractor’s impact on accuracy might 

seem surprising, it is consistent with the predictions of the biophysical model (Fig.1g). 

These behavioral data were collected during fMRI scanning in the experiment reported 

below but effects were robust and replicated under a number of additional conditions (SI.

6-8).

Impact of distractor value on neural signals of value

We next investigated whether distractor value impacted on neural signals for decision-

making and whether this could explain accuracy decrements when the distractor value was 

low. There is a vmPFC blood oxygen level dependent (BOLD) “value difference signal” 

(HV−LV) when subjects choose correctly3,5,9,16-19. The first analysis therefore looked for 

regions where BOLD was positively correlated with HV−LV in both correctly performed 

two-option and distractor trials. It identified a similar vmPFC region to that seen in previous 

studies (Fig.3a).

The time course of the vmPFC HV−LV value difference signal in distractor trials was 

extracted at coordinates from previous studies5,18 (Fig.3c) and used in analyses with 

orthogonal contrasts. We also extracted the HV−LV signal in the MIP region of interest 

(ROI) 25 (Fig.3b,d). The biophysical model predicted HV−LV value difference signals 

should be attenuated with low distractor values, so we tested whether the same was true in 

the brain. We divided the distractor trials into four bins according to HV−D and plotted peak 

HV−LV effect size in each bin (Fig.4a) and tested whether there was a consistent decrease 

in peak effect size across subjects as HV−D increased (consistent negative slope for each 

individual’s best fitted line in Fig.4a). Consistent with model prediction, vmPFC HV−LV 

value difference signals were weaker when distractor values were smaller (i.e. HV−D was 

larger; average slope: β =−0.065, t20=−3.200, p=0.005; Fig.4a).

To demonstrate that change in HV−LV signal across bins was really due to changing 

distractor values rather than some confound in our design, we also binned the matched two-

option trials in an identical manner. It was therefore possible to examine HV−LV signals in 

two-option trials as a function of the absent distractor value that would have been present on 
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its matched distractor trial (Fig.4c). As an additional precaution, we only analyzed trials 

performed correctly in both two-option and distractor trial conditions. This ensured that any 

HV−LV signal modulation differences between conditions could not be attributed to 

differences in choices (biophysical model effects remained present even when analysis was 

restricted to correctly performed difficult trials: SI.9). Note that, just as it cannot predict 

other aspects of behavioral change between two and three choice situations, the model 

cannot predict the relative heights of the lines in figures 4a and 4c (without knowledge of 

how neurons are assigned to different options) but it does predict that only the line in 4a 

should be sloped and this is what we found. There was no significant effect of the absent 

“distractor” on two-option trials (β=0.010, t20=0.451, p=0.657; Fig.4c); and effects in two-

option and distractor conditions differed significantly (t20=2.211, p=0.039). HV−LV signal 

weakening in vmPFC in distractor trials is a consequence of distractor presence.

Notably, the impact of distractor values on HV−LV signals in MIP did not reach 

significance on either distractor (β=−0.032, t20=−1.271, p=0.218; Fig. 4b) or two-option 

trials (β=−0.034, t20=−1.121, p=0.276; Fig.4d), nor was there any difference between 

conditions (t20=−1.230, p=0.233). An ANOVA comparing change in HV−LV signals in 

MIP and vmPFC in two-option and distractor conditions confirmed a significant interaction 

(F1,20=6.104, p=0.023). In additional control analyses, we also showed that the effect of HV

−D on vmPFC signal was neither driven by variance in HV nor HV+LV (SI.10). Our results 

suggest that distractor impact on accuracy might be mediated via vmPFC rather than parietal 

cortex.

To test this possibility we looked at vmPFC value difference signals in a complementary 

way, instead of binning HV−LV signals by HV−D, we carried out an analysis of vmPFC 

BOLD looking at the interaction term (HV−LV)(HV−D) (Fig.5a). A key strategy to achieve 

high accuracy in distractor trials is to focus on the most relevant value comparison – that 

between the available options (HV−LV). Incorporating the irrelevant HV−D information 

into this comparison could result in less accurate representation of the value difference and 

this may lead to suboptimal decisions. We examined individual differences in average 

accuracies in distractor trials to see if they were related to individual differences in the 

vmPFC (HV−LV)(HV−D) signal by a partial correlation analysis, with RT and other neural 

signals as controlling factors. Individuals with lower accuracies had more negative (HV

−LV)( HV−D) signals (r=0.512, p=0.030; Fig.5b). The relationship between the (HV−LV)

( HV−D) signal and inaccurate behavior was especially strong at late time periods 

suggesting prolonged (HV−LV)(HV−D) modulation of vmPFC BOLD led to suboptimal 

decisions. To further test this hypothesis, we extracted this signal from an earlier period and 

calculated how much the signal size changed. Individuals that showed stronger reduction of 

the negative (HV−LV)(HV−D) signal had higher accuracies (r=0.607, p=0.008; Fig.5c).

Psychophysiological interactions of vmPFC

So far we have referred to vmPFC as a decision-maker but an alternative account 

emphasizes its role in attentional selection2,30. The finding that variation in accuracy is 

related to variation in vmPFC (HV−LV)(HV−D) signal is consistent with a variant of the 

latter hypothesis in which vmPFC does not just compare values of potential choices but 
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selects key choices that might be compared as opposed to irrelevant distracting, albeit value-

laden, information in the environment.

We looked for further evidence for whether vmPFC might, respectively, facilitate or 

suppress representation of information relevant or irrelevant for the value comparison at 

hand. We carried out a psychophysiological interaction (PPI) analysis of all trial data 

seeking brain regions in which BOLD changed its coupling with vmPFC as a function of the 

irrelevant value contrast (HV−D). We found a large swathe of lateral orbitofrontal cortex 

(lOFC) extending into ventrolateral prefrontal cortex to be negatively coupled with vmPFC 

as a function of HV−D (cluster-forming threshold z>2.3, p<0.05 cluster-corrected, Fig.6a). 

Unlike vmPFC, lOFC is less important for value comparison but instead lesion, single 

neuron recording, and fMRI studies2,9,10,31-33 suggest it represents precise associations 

between stimuli and specific outcomes. Here, we extend this to suggest that the relevance of 

the stimulus-reward representation encoded in lOFC may affect its coupling with vmPFC. A 

second part of the PPI analysis, focusing on the same lOFC region, found an area of positive 

coupling with vmPFC as a function of the relevant value comparison, HV−LV (cluster-

forming threshold z>2.7, p<0.05 cluster-corrected, Fig.6b).

Causality cannot be inferred from PPI analysis, and it is unclear whether the results reflect 

an increased influence of vmPFC over lOFC, or vice versa. The former interpretation is 

consistent with an otherwise surprising finding2 that lesions in this vicinity sometimes cause 

macaques to become worse at choosing as the difference in value between two better options 

and a third, lower value item increases2 whereas normally such differences make decision-

making easier. Such a deficit might be expected if vmPFC lesions prevented focusing on the 

most relevant comparisons when making decisions. Other lesion findings might be 

interpreted in a related manner34.

Divisive normalization of spatial value signals in MIP

Our demonstration that (i) decision-making accuracy and (ii) vmPFC value difference 

signals are reduced in the presence of low value distractors seems at odds with an influential 

account of multi-alternative decision-making27. It argues that divisive normalization, a 

standard form of gain control operating in sensory systems and which may explain 

attentional modulation in sensory systems35,36, also impacts on choice valuation. According 

to this account, value signals are diminished by high, rather than low, value distractors. For 

example, IPS neuron activity is correlated with the value of saccades to targets in their 

receptive fields but the activity is normalized by values of alternative targets outside the 

receptive field27; the activity associated with a target is reduced by a greater amount if there 

is a high value alternative elsewhere in the visual field than if there is a low value 

alternative.

It is, however, important to remember that divisive normalization is prominent in 

sensorimotor areas. Typically neurons exhibiting divisive normalization, like those in IPS, 

have spatially-specific receptive fields and there is evidence that IPS selects spatial locations 

for behavioral priority37. By contrast, range normalization when reported in prefrontal 

cortex appears on the timescale of sessions, and to a lesser extent on individual trials38. It is 
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therefore possible that trial-to-trial divisive normalization in parietal cortex might be 

apparent if we look for spatially-selective value signals.

In the next analysis, rather than looking for activity covarying with the chosen option’s 

value irrespective of its spatial position, as we had done up to now, we looked for activity 

covarying with the value of choices made to a particular side of space39. We focus here on 

MIP and vmPFC signals covarying with values of correct choices made with the 

contralateral hand. We tested whether such contralateral option (COpt) choice signals were 

diminished when the total value of the options associated with the ipsilateral response 

(ipsilateral value: IV) was higher. Consistent with divisive normalization accounts15 the 

MIP COpt signal was significantly diminished as IV increased (β=−0.053, t20=−3.490, 

p=0.002; Fig.7b). No such effect, however, was seen in vmPFC (β=0.015, t20=0.684, 

p=0.502; Fig.7a).

We also found that RTs varied in the manner predicted by a divisive normalization account. 

RTs increased as IV increased (β=0.142, t20=3.240, p=0.004; in other words subjects were 

slower when the total value of options was larger in the hemifield opposite to the COpt), 

whereas RTs were unaffected by values of unchosen options or distractor when they were on 

the same side of the COpt (β=−0.028, t20=−0.450, p=0.658). Next, we therefore investigated 

whether individual variation in RT was related to individual variation in the divisive 

normalization of MIP COpt signals. This also provides a way of testing whether MIP 

activity is actually related to task performance. We first estimated the impact of distractor 

value on the COpt signal in each subject by looking at the COpt×IV interaction. As 

expected, the interaction term was associated with a negative modulation of the BOLD 

signal suggesting that IV diminished the COpt signals (Fig.7c). Across subjects variation in 

the COpt×IV interaction term was negatively correlated with RT (r=−0.485, n=21, p=0.042; 

Fig.7d) after controlling for accuracy and other neural signals.

Discussion

We showed that a biophysical model of decision-making through mutual inhibition, predicts 

that a key decision variable, the signal encoding the difference in value between two 

choices, is reduced in the presence of a low value alternative because it imposes only weak 

inhibition on both better and worse potential choices, leaving them both relatively active. 

Both value difference signals in vmPFC and behavior in humans corresponded to model 

predictions. Additional experiments (Supplemental Modeling, SI.7,8) showed the value of a 

third, non-transient, choosable option exerts two kinds of influences on accuracy. As its 

value increases and approaches that of the best option, inaccuracy increases because it is 

itself more often chosen, as has been reported before40. However, when the third option is 

much lower in value, inaccuracy increases because more second best choices are made.

In humans, it is not possible to take time-resolved measures of neurotransmitters to test 

whether lower levels of inhibition occur when distractors have low values as the model 

predicts. Average vmPFC GABA concentrations, however, can be measured and they are 

associated with worse average two-option decision-making28.
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It is not possible to describe the impact of the distractor on behavior and vmPFC value 

difference signals in terms of divisive normalization accounts such as those proposed by 

Louie and colleagues27 to describe distractor effects in parietal cortex, even if vmPFC 

neurons with activity that is positively and negatively related to value are intermingled as 

has been reported in other frontal lobe regions41. Critically, however, when the fMRI data 

were re-analyzed, a spatially selective value signal–a contralateral chosen value signal 

specific to one response side–was found in MIP and its size was reduced in proportion to the 

value of alternatives on the other response side (Fig.7b) just as predicted by divisive 

normalization accounts27. Behavioral tasks requiring more spatially resolved responses 

(reaching movements to four different locations corresponding to the different potential 

stimulus quadrants) and employing more spatially resolved recording of brain signals might 

be necessary to identify a normalizing effect of stimuli presented in a different quadrant in 

the same hemifield as the COpt27.

Our version of Wang’s biophysical model predicts both subjects’ choices and vmPFC 

activity patterns. It is, however, possible that biophysical models of other networks might 

produce the activity patterns both we and Louie and colleagues27 observed in parietal 

cortex4,42.

That the current biophysical model provided a better description of vmPFC than IPS activity 

it is unlikely to reflect some vagary of task design. Care was taken to index values with 

conjunctions of simple visual features known to rely on parietal cortex43,44. Similar speeded 

response requirements were used in monkey experiments that reported parietal value 

signals14,15. Moreover, training of the sort subjects undertook before scanning leads to 

greater IPS activity during action selection45. That we were able to find value signals in MIP 

attests to the appropriateness of our protocol. Instead, the results suggest fundamental 

differences between vmPFC and IPS decision-making mechanisms. VmPFC neurons may 

employ more abstract and flexible coding principles than do spatially selective IPS neurons. 

Little is known of vmPFC neuron properties but what is known suggests differences from 

lOFC2,9-11,31,33,46-48.

We note that previous studies have presented evidence for encoding of the difference in 

value between options49 and for value normalization27 in the intraparietal sulcus. Here we 

provide some evidence that the human intraparietal region encodes the value difference 

between options (Fig.3d) but that spatial value signals are normalized in the same brain 

region even by the values of irrelevant stimuli (Fig.7).

While the nature of the vmPFC decision-making mechanism may cause failure of optimal 

choice in some circumstances, it has the advantage of favoring “satisficing” choices when 

time for deliberation is limited50 –choices that, while not ideal, are likely to be good given 

the options currently available; this is because failure of optimal choice only occurs when 

HV and LV are close in value. If time and resources for taking a decision are at a premium, 

as in many natural settings, then the vmPFC mechanism allows fast satisficing decisions to 

be made. It leads people to pick the second best option when the best and second best 

options are close in value and when the best and second options are both much better than 

another alternative.
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Our results resonate with the notion that IPS and vmPFC constitute two components of a 

system for value-based choice8 but suggest both components might simultaneously attempt 

to select the course of behavior. That individual variation in both vmPFC (Fig.5b) and MIP 

(Fig.7b) signals was correlated with individual variation in two distinct aspects of behavior 

supports this view. Moreover such a view is consistent with a demonstration that high value 

distractors, in a non-spatial task, sometimes only disrupted decision-making in the manner 

divisive normalization accounts predict after vmPFC lesion2. This could be explained if, in 

the absence of vmPFC, the divisive normalization effect of distractors on parietal activity 

had a greater impact on behavior. Such findings may contribute to a growing understanding 

of failures of optimal decision-making by suggesting that situational variables that favor 

either parietal or vmPFC control of behavior may determine patterns of deviation away from 

optimal decision-making.

Online Methods

Biophysical model

The biophysical model is the full spiking network model developed by Wang24 and 

subsequently used to investigate reward-guided decision making in both its full spiking 

form42 and its reduced mean-field form51. The parameters used were mostly the same as in 

the implementation of the model reported in Wang et al.24 The only modifications made to 

account for differences in our task were that we: 1) split the overall number or option 

specific excitatory pyramidal neuronal pools into three equal populations, each containing 

240 neurons; 2) only gave value input to the “distractor” option for the first 100ms after 

stimulus onset (corresponding to the time period before revelation of distractor identity in 

subsequent experiments, whereas the value inputs of the two available options were given 

for a total of 800ms. The scaling of the value-related input was selected at 17.5 arbitrary 

units with a variance of 25 arbitrary units to match the average relationship between value 

difference and accuracy in human subjects (Fig.1b). Timings of stimulus onset, distractor 

removal and increased noise can be seen in figure 1c/d. The model simulation contained 149 

trials of different option value combinations. We repeated the model 36 times (i.e. 5364 

trials in total) and pooled results for our statistical analyses. The firing time courses shown 

were generated from the original time courses by averaging firing from 10 samples per 

millisecond to one sample every 10 milliseconds.

We focus on examining activity and inhibition in neuron pools corresponding to available 

options (Fig.1c-f). In addition, however, we also generated model “choices” once PHV and 

PLV had a firing difference of 6 Hz (Fig.1g).

Subjects

Twenty one healthy, right-handed subjects (nine females), aged 19-34 years with no 

psychiatric or neurological history participated. Informed consent was obtained from every 

subject. The study was approved by the Oxfordshire National Health Service Research 

Ethics Committee.
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Experimental task

In our fMRI task, subjects chose repeatedly between stimuli associated with different reward 

magnitudes (£2, £4, £6, £8, £10, £12) and probabilities (12.5%, 25%. 37.5%, 50%, 62.5%, 

75%, 87.5%), represented by colors (red to blue) and orientations (0° to 90°) of rectangular 

bars. Associations between visual features and decision variables were counterbalanced 

across subjects. Participants were presented with 150 trials each of two-option trials and 

distractor trials (300 trials in total) randomly interleaved. All the option value configurations 

in the distractor trials were identical to those used in the biophysical model; those in the 

two-option trials were also matched with the available options in the distractor trials. Each 

trial began with a central fixation cross indicating an inter-trial interval (3-6 s) followed by 

an initial phase in which two (two-option trials) or three (distractor trials) stimuli were 

presented in randomly selected screen quadrants. The initial phase was brief – only 0.1 s. 

Then, in the decision phase, orange boxes were presented around two stimuli indicating 

those options were available for choice. In distractor trials, a purple box was also presented 

around the third stimulus to indicate a distractor. Subjects were instructed to select one of 

the available options within 1.5 s. Subjects were warned they were “too slow” if no response 

was made within 1.5 s and a new trial began. After an option was chosen, the box 

surrounding it turned red in the interval phase (1-3 s). Then the edge of each stimulus turned 

yellow or grey in the outcome phase to indicate, respectively, whether the choice had been 

rewarded or not (1-3 s). The final reward allocated to the subject on leaving the experiment 

was calculated by averaging the outcome of all trials. Subjects learned the task and visual 

feature associations and experienced Distractor trials in a practice session before scanning. 

At the end of practice, all subjects chose HV on >70% of two-option trials when it was 

associated with both higher reward magnitude and probability.

We provided incentives for subjects to attend to the visual features of every stimulus by 

interleaving “catch” trials between decision phase and interval phase in 15% of all the trials. 

In this way we ensured that it was unlikely that subjects would ignore the distractor values. 

In a “catch” trial, the word “MATCH” was presented once subjects selected an option in the 

decision phase (1 s). Then, an exemplar stimulus was presented at the center of the screen 

and subjects had to indicate, within 2 s, the position of the same stimulus presented before 

and during the decision phase. Feedback was then given to indicate whether the response 

was correct or not (1.5 s). The trial then continued with the resumption of the interval phase, 

followed by the outcome phase. Each correct response in the “catch” trial added an extra 10 

pence to the final reward.

Behavioral and biophysical model analysis

The value of each option was calculated by multiplying the associated reward magnitude 

and probability. The difference in value between the available options and the distractor can 

be indexed in various ways, HV−D, LV-D, or (average of (HV and LV)-D), all of which are 

correlated (a consequence of keeping the correlations between HV−LV, HV−D, and D low), 

and essentially similar results follow in all cases. Here, we report results using HV−D as this 

might be thought the strongest test of our hypothesis; HV−D is clearly a value difference 

that is similar in formulation to HV−LV but it should be irrelevant for decision-making. It 
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would therefore be especially striking if HV−D influenced the impact HV−LV had on 

behavior and brain activity (figure 5 illustrates a situation where this is true).

A logistic regression was performed for every subject to predict accuracy with the following 

regressors: value difference between higher and lower value options (HV−LV), value 

difference between available option and distractor (HV−D), (HV−LV)(HV−D) interaction, 

HV+LV and a binary variable describing trial type. Alternative regression analyses are also 

presented (SI.5).

The β weight of each regressor of every subject was calculated and then a one-sample t-test 

against zero was computed. Such a test identified regressor effects that replicated throughout 

the group of participants. Two dimensional plots (Fig.2c) were generated to illustrate 

behavioral effects by binning each distractor trial according to HV−LV and HV−D. General 

linear models (GLMs) with similar regressors were used in biophysical model analyses.

To examine divisive normalization effects on behavior, we performed another logistic 

regression that included values of chosen option (COpt), ipsilateral options (IV), the 

interaction COptxIV, value of unchosen option or distractor when they were on the same 

side as COpt and its interaction with COpt to predict reaction time (RT).

Imaging data acquisition and preprocessing

Imaging data were acquired on a Siemens 3T MRI scanner. FMRI data were acquired with 

3×3×3 mm3 voxel-resolution, TR=3 s, TE=30 ms, flip angle=87°, slice angle =15°. Signal 

dropout in vmPFC was minimized by applying z-shimming at this region52. Field maps were 

acquired using a dual echo 2D gradient echo sequence: 3×3×3 mm3 voxel-resolution, 

TR=445 ms, TE 1=5.19 ms, TE 2=7.65 ms. T1-weighted structural images were acquired 

using an MPRAGE sequence: 1×1×1 mm3 voxel-resolution, 174×192×192 grid, TR=2200 

ms, TE=4.53 ms, TI=900 ms.

FMRI data were analyzed using FMRIB’s Software Library (FSL)53. Preprocessing was 

performed by applying high-pass temporal filtering (3 dB cutoff of 100 s), Gaussian spatial 

smoothing (full-width half maximum of 5 mm), motion correction54 and field map 

correction for signal distortion55. Motion artefact was removed by performing independent 

component analysis using FSL MELODIC. Each individual’s fMRI data set was registered 

to the same individual’s high-resolution structural image and then into the standard Montreal 

Neurological Institute (MNI) space using affine transformations56.

FMRI data analysis

Whole-brain analyses were conducted using a univariate GLM approach. At the group level, 

analyses were performed using FMRIB’s local analysis of mixed effects57,58, with outlier 

deweighting59 and cluster-based thresholding criteria of z>2.3 and p<.05 cluster-corrected60, 

unless otherwise specified.

To identify brain regions encoding value difference, we included the following regressors: 

chosen-unchosen value difference in two-option trials, chosen-unchosen value difference in 

distractor trials, and HV−D in distractor trials, time-locked to stimulus onset; left hand 
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response, right hand response, time-locked to subjects’ response; magnitude of reward 

feedback and feedback indicating inappropriate responses (mistakenly choosing a blank 

space or distractor) and slow responses, time-locked to feedback onset; and feedback on 

catch trials time-locked to its onset.

We extracted MIP and vmPFC signals from three-voxel radius spherical masks at 

coordinates from our previous studies of MIP25 and vmPFC5,18 (which corresponded to the 

peak effect in the current study). Coordinates in MNI space were transformed to subject 

space by affine transformation. The extracted time courses were 10 times oversampled by 

cubic spline interpolation. The time courses were then time-locked to onset of the initial 

phase and were analyzed by applying a GLM to every time point of each subject separately. 

The mean and standard error of the β weights of regressors were calculated across subjects 

so that time courses of effect sizes could be plotted. To illustrate the value difference signals 

in vmPFC and MIP we analyzed the distractor trials by including regressors of HV−LV, HV

−D, HV+LV and magnitude of reward feedback in the GLM (Fig.3c,3d). In Fig.5a we also 

included an additional (HV−LV)(HV−D) interaction term regressor. Note that because we 

focused on correct trials only, the HV−LV signal that corresponds to the chosen-unchosen 

value signal previously reported in vmPFC. In Fig.7a, we looked at modulation of the MIP 

COpt signal. The following regressors were included in the GLM: COpt, IV, and the 

interaction between these two regressors COpt×IV (which served as our critical measure of 

modulation), magnitude of reward feedback, and a binary variable describing trial type. 

Error bars in all the figures represent standard error.

To investigate modulation of the HV−LV value difference signal by distractor (Fig.4a,b), we 

separated the distractor trials into four bins according to HV−D difference (>150, 0 to 150, 

−150 to 0, <−150). Four corresponding bins were identified in the two-option trials. The 

matched trials were, by design, identical to distractor trials in terms of available options (HV 

and LV) but obviously they lacked a distractor. We included in our analysis for a given 

participant only matched pairs of trials when correct responses were made in both trials. It is 

important to use only correct trials in the analysis because the vmPFC decision signal 

reflects the chosen-unchosen option value difference and this would differ between correctly 

and incorrectly performed versions of the same trial. We applied a GLM to each bin of every 

subject that included regressors of the HV−LV value difference and the magnitude of reward 

feedback. The peak HV−LV value difference signal in each bin was extracted in every 

subject within a 5-11 s time window from onset of the initial phase. Linear regression was 

performed to predict HV−LV signal size by the HV−D value difference rank associated with 

the four bins for each trial type. The β weight for HV−D rank was an index of modulation in 

HV−LV signal size by HV−D. A two-tailed one sample t-test compared the group’s β 

weights with zero to determine consistency and significance of modulation.

A similar analysis was performed to investigate the divisive normalization effect on the 

COpt signal. We took correct trials where choices were made with the hand contralateral to 

the ROI and binned them according to IV. Effect sizes in each bin were derived from a 

GLM with a regressor of COpt. The maximum COpt signal of each subject was extracted 

from a time window where group effects peaked (MIP, 12-18 s; vmPFC, 5-11 s).
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We performed partial correlations to examine relationships between neural signals and 

different aspects of behavior. We extracted the effect size of the impact of HV−D on the HV

−LV signal (Fig.5a), as indexed by the maximum (HV−LV)(Op-D) signal (13-19 s), from 

every subject and correlated it with the subjects’ accuracies in distractor trials. The control 

variables were sizes of HV−LV and HV−D signals and RT in distractor trials. In Fig.5c, we 

subtracted the maximum (HV−LV)(HV−D) signal in a 13-19 s time window from that in a 

2-7 s time window to obtain the size of signal reduction and correlated this with subjects’ 

distractor trials accuracies. A second analogous analysis in the divisive normalization 

analysis (Fig.7b) examined partial correlation between each subject’s maximum effect size 

for the interaction term COptxIV (12-18 s) and mean RT. Control variables were sizes of 

COpt and IV signals and accuracy.

Psychophysiological interaction analysis

We performed a psychophysiological interaction (PPI) analysis61 to examine how vmPFC 

coupled with other brain regions to encode HV−LV and HV−D value differences. Each PPI 

regressor was generated by multiplying the demeaned physiological regressor (time course 

of vmPFC BOLD) by the demeaned, convolved psychological regressor (either HV−LV or 

HV−D value differences in distractor trials). We entered the following regressors into the 

GLM: time course of vmPFC, HV−LV value difference in distractor trials and its PPI with 

vmPFC, HV−D value difference in distractor trials and its PPI with vmPFC, HV−LV value 

difference in two-option trials, left hand response, right hand response, number of stimuli 

presented, magnitude of reward feedback, feedback on the catch trials and feedbacks 

indicating inappropriate and slow responses. We initially used a cluster-based threshold (z > 

2.3, p<.05 Fig.6a) and then a more stringent cluster-based thresholding criterion of z > 2.7, 

p<.05 (Fig.6b) to reduce the possibility of any false positive results in follow-up analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Biophysical model predictions. (a) The biophysical model is similar to models used 

elsewhere3,24 but extended to contain three pools of excitatory pyramidal neurons (PHV, 

PLV, PD) corresponding to choices of either the high value or low value available option or 

the distractor D. There is recurrent excitation between neurons within pools but inhibitory 

interneurons (Pi) mediate competition between pools. Activity in each pool is initially 

affected by an input proportional (IHv, ILV, ID) to the value of each option (IHV and ILV was 

on between 200-1000 ms and ID was on between 200 and 300 ms) but inhibition between 
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pools leaves only a single pool in a high firing attractor state. The corresponding option is 

then chosen. (b) The scaling of the value related input was selected at 17.5 arbitrary units 

with a variance of 25 arbitrary units so as to match the average relationship found between 

value difference and accuracy seen in the human subjects tested in the subsequent behavioral 

experiment (Fig.2). The model’s “choices” were defined once PHV and PLV had a firing 

difference of 6 Hz. (c) The magnitude of difference in the activity of PHV and PLV, which 

corresponds to the value difference signal (HV−LV) used in fMRI analyses, decreased as a 

function of increasing size of the irrelevant difference between the available options and the 

distractor (HV−D) in a regression analysis. The effect for trials when HV−LV was small is 

shown but a similar analysis performed for all trials is shown in SI.1. (d) To see how the 

effect emerges, average PHV and PLV firing activity at two different levels of D are also 

shown. (e) The effect arises because the amount of inhibitory activity (Pi) increased as HV

−D decreased (larger relative distractor value) and PD inhibited representations of the other 

two options, PHV and PLV more. In those cases, the competition between PHV and PLV was 

resolved more quickly, causing a smaller overall input to the inhibitory neurons. (f) The 

excitatory population reached a high attractor state when the corresponding option was 

chosen by the model. (g) When D was much lower in value than the choosable options the 

model was more likely to make the wrong choice; PHV became less likely to enter the higher 

firing attractor model state. The shadings (c-e) denote standard error. ** p<0.01.
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Figure 2. 
Behavioral task and results. (a) In the initial phase of two-option trials subjects saw two 

visual stimuli indicating two possible choices. These were immediately surrounded by 

orange squares, indicating that either option might be chosen, in the decision phase. A 

further color change during the interval phase of one box indicated which choice the subject 

made. In the outcome phase of the trial the outline color of the chosen stimulus indicated to 

the subject whether the reward had been won. The final reward allocated to the subject on 

leaving the experiment was calculated by averaging the outcome of all trials. Distractor 

trials unfolded in a similar way but, in the decision phase, one stimulus, the distractor, was 
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surrounded by a purple square to indicate that it could not be chosen while the presentation 

of orange squares around the other options indicated that they were available to choose. (b) 
Prior to fMRI scanning subjects learned that stimulus orientation and color indicated the 

probability and magnitude of rewards if the stimulus was chosen by making a spatially 

congruent response. In this way choice values were conveyed to the subjects in a simple 

manner just as they are in macaque experiments on value-coding in parietal cortex (c) 
Choice accuracy (% HV choice) is indicated by color as a function of both the difference in 

value between the two available options (HV−LV) and the difference in value between 

available options and the distractor (HV−D). Choices are less accurate when the HV−LV 

difference is small (bottom of figure contains more red and dark colors than the top) but 

also, importantly, when HV−D was large (more red and dark colors at the right hand side 

than the left hand side of the figure) especially when HV−LV was small.
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Figure 3. 
(a) As in previous experiments there was a prominent value difference effect between 

available options in vmPFC (sagittal section). An ROI in this region (green) was defined for 

the subsequent time course analyzes. (b) ROI in MIP (blue) with coordinates taken from 

Mars et al.25 (coronal section). (c) Time course of HV−LV value difference signal in correct 

trials in vmPFC and (d) MIP. Ini, initial phase; Int, interval phase; Out, outcome phase; ITI, 

inter-trial interval.
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Figure 4. 
(a) When the HV−LV value difference signal was binned as a function of the difference in 

value between available options and the distractor (HV−D) it was clear that, in vmPFC, it 

declined significantly as HV−D increased (in other words as D was lower) in distractor trials 

(c) but not in matched two-option trials. (b,d) No modulation, however, was seen in MIP in 

either distractor trials or matched Two-option trials.

Error bars in s.e.m.

* Effect size of the slope, p=0.005

Chau et al. Page 23

Nat Neurosci. Author manuscript; available in PMC 2015 December 14.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 5. 
(a) The distractor-induced modulation of vmPFC HV−LV signals can be seen by a 

complementary analysis that included regressors corresponding to both the value difference 

between available options (HV−LV) and to the value difference between available options 

and the distractor (HV−D) and their interaction (HV−LV)(HV−D). (b) Individuals with 

more negative (HV−LV)(HV−D) interaction signals, especially in a late 13-19 s time 

window, were associated with less accurate decisions, after controlling for the effects of HV

−LV, HV−D signals and RT. (c) It appeared that failure to reduce the size of the impact of 
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the (HV−LV)(HV−D) interaction term on vmPFC BOLD activity was associated with 

inaccurate choice; individuals with less reduction of the negative (HV−LV)(HV−D) signal 

in this late time window compared to an earlier 3-7 s time window were more inaccurate.
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Figure 6. 
Psychophysiological Interaction (PPI) results. (a) Coupling with vmPFC as a function of the 

negative effect of the irrelevant comparison between available options and the distractor 

(HV−D) increased in lateral orbitofrontal and ventrolateral frontal cortex. Representations 

associated with the irrelevant comparison HV−D were reduced in tandem with vmPFC 

activity in these regions that are important for representation of individual stimuli and their 

associated outcomes. (b) Coupling with vmPFC as a function of the positive effect of the 

decision-relevant value difference (HV−LV) increased in part of the same region.
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Figure 7. 
Divisive normalization of spatially specific contralateral option (COpt) choice signals in 

MIP. Value signals specific to contralateral responses in vmPFC (a) and MIP (b). The value 

signal decreased as the total value of stimuli (ipsilateral value: IV) associated with the other, 

ipsilateral, response increased in MIP (b) but not vmPFC (a). (c) A complementary analysis 

of the divisive normalization effect of IV on COpt signal in MIP. There was a negative 

effect of the interaction term COpt×IV suggesting that MIP spatial value signals were 

diminished in the presence of value associated with the ipsilateral response. (d) Individuals 

with more negative COpt×IV effects had larger average RTs suggesting that greater divisive 

normalization of spatial value signals in MIP was associated with slower RTs, after 

controlling for COpt, IV signals and accuracy.

Ini, initial phase; Int, interval phase; Out, outcome phase; ITI, inter-trial interval.

Error bars in s.e.m.

* Effect size of the slope, p=0.003
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