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Abstract

Valuation is a key tenet of decision neuroscience, where it is generally assumed that different 

attributes of competing options are assimilated into unitary values. Such values are central to 

current neural models of choice. By contrast, psychological studies emphasize complex 

interactions between choice and valuation. Principles of neuronal selection also suggest 

competitive inhibition may occur in early valuation stages, before option selection. Here, we show 

behavior in multi-attribute choice is best explained by a model involving competition at multiple 

levels of representation. This hierarchical model also explains neural signals in human brain 

regions previously linked to valuation, including striatum, parietal and prefrontal cortex, where 

activity represents competition within-attribute, competition between attributes, and option 

selection. This multi-layered inhibition framework challenges the assumption that option values 

are computed before choice. Instead our results indicate a canonical competition mechanism 

throughout all stages of a processing hierarchy, not simply at a final choice stage.

Introduction

When choosing between different options, it is often the case that one alternative is 

preferable on one set of attributes, but another is preferred on others. Such trade-offs are 

ubiquitous in decisions affecting consumers1, foraging animals2, social interactions3, and 

economic choice4. Whilst key aspects of multi-attribute choice behavior are well 

characterised, their neural basis has not yet been systematically examined. This question is 

of significance not only in relation to the ecological validity of such decisions, but also 

because of the constraints they place on the implementation of choice in neural circuits.
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When faced with such choices, human subjects dynamically construct their preferences 

online as opposed to merely revealing them1. A common assumption in neurobiological 

studies of reward-guided choice is that preference construction depends first upon 

combining attributes within each option into an integrated value, followed by a process 

involving value comparison5-11. This ‘integrate-then-compare’ strategy, a classic solution to 

the decision problem in the behavioral literature, holds the appeal of a normative approach 

to choice, albeit a computationally expensive one12. Some expressions of choice behavior 

indicate that subjects do indeed integrate different features of an option to form a unitary 

value13.

However, anomalies in human decision making indicate this normative explanation cannot, 

by itself, fully account for subjects’ choice behavior. For instance, behavioral economic 

studies highlight preference reversals between two options when a third option is introduced. 

As this is critically dependent upon the degree of similarity between alternatives on specific 

attributes, this raises the likelihood of a within-attribute comparison process14. Studies of 

information gathering during multi-attribute choice, containing multiple options and 

multiple features, also suggest evidence is acquired within-attribute, at least initially15. Such 

behavior is explained by several alternative accounts, and these depend upon different 

combinations of within-attribute and within-option comparisons1,14,16-19.

The neural substrate of these alternative decision strategies remains unexplored, but is of 

great interest given that it violates the most common assumption in neural studies of 

decision-making – that values are integrated and then compared, or even that values are 

computed prior to choice. One obstacle to exploring this conundrum has been a difficulty in 

designing tasks where there is transparent behavioral evidence for within-attribute 

comparison20. In addition, there is a lack of a candidate neural mechanism by which this 

type of decision might be implemented.

In this paper, we provide evidence that preference construction in multi-attribute choice may 

occur via a hierarchical competition process17-19. Such a model argues that because 

competition via mutual inhibition is a canonical feature of local neural circuits21, it should 

take place at all levels of representation. Within this scheme comparison would still occur at 

the level of option values5-10, but it also has the additional features of comparison occurring 

at the level of the component attributes, as well as at the level of which attribute is most 

salient for guiding choice. To test this mechanism we combined behavioral analysis, 

functional imaging data and computational modelling in a novel multi-attribute choice 

paradigm. Subjects were explicitly instructed to equally weight two different attributes in 

guiding choice. Crucially, the task was designed such that within-attribute comparisons 

might emerge naturally, even in a relatively simple (and experimentally tractable) three-

option, two-attribute decision. Using this task we found clear behavioral evidence for a 

within-attribute comparison strategy. Critically, on each trial one or other of the attributes 

was more salient (‘relevant’) for guiding behavior, allowing us to investigate how 

competition for attribute salience is implemented neurally. The key findings here, based on 

functional magnetic resonance imaging (fMRI) data, were that intraparietal sulcus (IPS) 

signalled a competition over which attribute was the most salient for the current decision, 

whereas portions of medial frontal cortex reflected an ‘integrated’ value signal. In keeping 
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with this functional architecture, IPS altered its functional connectivity with regions 

subserving lower level (within attribute) comparisons as a function of which attribute was 

currently most relevant for guiding behavior. We argue our results provide evidence for a 

canonical inhibitory competition mechanism that is general throughout all layers of a 

stimulus processing hierarchy, and not simply present at a final choice stage.

Results

A multi-attribute reward-guided decision task

We first introduce the multi-attribute choice task, which forms the basis for the modelling 

and behavioral results set out below. Subjects were trained on the relative likelihood of 

receiving a reward on a set of eight different images (not tied to any spatial location (Fig. 

1a), hereafter referred to as ‘stimuli’) and a set of eight different buttonpresses (tied to 

spatial locations onscreen (Fig. 1b), hereafter referred to as ‘actions’). Subjects learned 

action-reward probabilities (pA) and stimulus-reward probabilities (pS) separately from one 

another, by performing pairwise choices between two randomly selected alternatives from 

each set. If they chose the better of the two options they received positive feedback (a smiley 

face), and if they chose the worse they received negative feedback (a sad face). Subjects 

received interleaved blocks of stimulus and action trials across a training session that lasted 

approximately 45 minutes, until they attained a preordained performance criterion.

Following training, subjects underwent fMRI scanning whilst performing a monetary reward 

task in which three stimuli were pseudorandomly paired with three actions (Fig. 1c). 

Subjects were instructed to apportion equal weight to each of the two sources of information 

so as to select the best option. Rewards were determined probabilistically, based upon pO – 

a Bayesian combination of probabilistic information from the stimulus (pS) and action (pA) 

(Fig. 1d and methods). The logic behind this rule for combining the prelearnt probabilities is 

straightforward – for example, two cues that both predict reward with probability of 0.5 

combine to produce a net reward probability of 0.5, as would one cue with 0.8 probability 

combined with another cue with 0.2 probability. It also meant that the information provided 

by each of the two attributes was balanced; both stimulus and action provided equally 

relevant probabilistic information about reward likelihood . We adopted such an approach to 

avoid problems arising from subjects being biased to use each attribute differentially. The 

effectiveness of our approach was revealed in behavioral evidence that subjects were not (on 

average) biased towards using either stimulus or action attribute (Supplementary Fig. 1).

Subjects successfully deployed information learnt in the initial phase of the experiment to 

guide their decisions inside the scanner. Based on the Bayesian integrated values (pO), 

subjects chose the best option on 79.0 +/− 3.8 % (mean +/− s.d) of all trials. On more 

challenging ‘conflict’ trials, where the best stimulus favoured one option but the best action 

favoured a different option, this figure fell to 70.9 +/− 4.6 %. On 89.6 +/− 4.8 % of all these 

more challenging trials, subjects selected either the best pS or the best pA. However, there 

was a relatively high proportion of challenging trials (22.6 +/− 3.8 %) where subjects went 

with a high pS or pA when it was not the highest pO. Such choices accounted for the 

majority (78.2 +/− 10.3%) of errors on challenging trials. Moreover, a substantial portion of 

these errors (42.2 +/− 15.6 %) were those where the best individual attribute on the chosen 
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option exceeded or was equal to the best attribute available on the best option. There were 

few trials (~5 per subject) where the highest pO was neither the best pS or the best pA.

A further simple measure of subjects’ behavior is shown in Figure 1e. This focusses on the 

challenging ‘conflict’ trials, and plots the probability of using the stimulus attribute to guide 

behavior (i.e. choosing the best stimulus) as a function of the within-attribute differences on 

stimulus and action attributes. When the within-attribute difference is much greater on the 

stimulus attribute than the action attribute, subjects became far more likely to select based 

upon the largest stimulus, and vice versa. Additionally, because the point of subjective 

equivalence (p=0.5) occurs when within-attribute differences are equal, this further shows 

that subjects did not have any bias (on average) to using one attribute over the other.

Hierarchical competition for multi-attribute choice

How might subjects solve such a task? The classical idea is that once the two attributes are 

integrated to form a unitary value (for example, by calculating pO for each option), the 

option values will then be compared with one another. One common model for comparison 

assumes a ‘softmax’ choice rule, where the probability of choosing an option is a function of 

its value relative to other alternatives. To additionally capture subjects’ reaction times, 

comparison may be modelled as a dynamic process in which evidence is accumulated 

through time. There are several closely interrelated dynamical models17-19,21,22. One class 

assumes accumulators for each option that receive value-related inputs and compete via 

inhibition18,21.

Importantly, softmax choice models and evidence accumulator models make firm 

predictions as to which factors should influence choices and reaction times in multi-

alternative and multi-attribute decisions. Firstly, in the softmax choice rule, the relative 

frequency of choosing option 1 over option 2 is independent of any remaining values in the 

decision - that is, pO3 does not affect the ratio of choosing between options 1 and 2:

(The softmax temperature parameter is omitted for clarity). Secondly, predictions of reaction 

times and choices from accumulator models of decision making suggest they will principally 

be driven by variation in integrated values (pO) rather than underlying constituents of these 

values (pA and pS).

However, several known effects in multi-attribute and multi-alternative choice violate these 

predictions. Many of these violations show that the value of a third option can influence the 

relative frequency of choosing between two options, serving as a ‘distractor’ from 

discriminating between options one and two. One account of distractor effects appeals to a 

neural process of normalisation by the set of choice alternatives on offer, prior to 

comparison. This implies high-valued third items prove more distracting than low-valued 

third items and so impair discrimination, matching empirical observations in humans and 

macaque monkeys23. Specific classes of distractor effects also occur in multi-attribute 
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choice, such as ‘compromise’, ‘similarity’ and ‘attraction’ effects17. These necessitate 

comparison at the level of underlying attributes and not solely at the level of integrated 

values and so have inspired models where evidence accumulation and competition occur at 

multiple hierarchical levels17-19.

We propose a hierarchical competition model for our task (Supplementary Fig. 2). This is 

motivated by previous models, together with the idea that specific attributes are more 

influential or relevant on certain trials for guiding behavior, as evidenced by behavioral 

observations made below. Evidence accumulation and comparison occurs at multiple levels 

in the model: within-attribute, on integrated values, and also between attributes (in a 

competition for ‘attribute relevance’). Normalisation is also included in the model, but 

occurs at the initial input level of individual attributes rather than on integrated values. We 

provide detailed mathematical description of the model in the methods section.

The most novel feature of the model is the competition for attribute relevance. Inputs to this 

competition, denoted by ** in Supplementary Figure 2, reflect the absolute difference 

between the best and second best option on each attribute, calculated instantaneously from 

currently accumulated evidence in each node. Attributes with a large within-attribute 

difference (where the best option is significantly better than the second best) dominate this 

competition and so become more relevant for guiding model choices. This is achieved via 

feedback connections (dashed lines) which reweight the importance of each attribute as it 

projects forward to an ‘integrated’ value comparison. The output of the integrated value 

comparator is used to determine the model’s choice and reaction time, once activity within 

this node reaches a decision threshold.

Importantly, there are several behavioral observations from our experiment predicted by this 

framework that appear inconsistent with alternative or previous models (see Supplementary 

Figs. 3-4). These are a specific within-attribute distractor effect on subjects’ choices, and a 

selective effect of value difference on the relevant attribute on subjects’ reaction times (Fig. 

2). In the next section, we elucidate these, based on subjects’ actual behavior. The exact 

same analysis is applied to both subject behavior and that of the hierarchical model.

A within-attribute distractor effect in choice

We first assess the hierarchical model’s predictions of distractor effects, where the value of 

option three affects discriminations between options one and two. We analysed model 

choices using binomial logistic regression. In this analysis, the presence or absence of a 

stimulus/action was denoted by an indicator variable. This allows the regression model to 

independently estimate the influence of each stimulus and each action on the probability of 

choosing the associated option, and so is agnostic to the probabilities assigned to each 

stimulus/action by the experimenter. It controls for the other attribute presented on the same 

option, as well as the attributes of the other option. As expected, better stimuli and better 

actions tied to a particular option led to a clear increase in the logistic regression weight for 

that option in the model’s choices (Fig. 2a). This was also found to be true in subject 

behavior (Fig. 3a).
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An important feature of this analysis was that it focussed on just a pair of the options, 

including one chosen and one unchosen option at a time. By repeating this analysis on a 

subset of the data where the third option, left out of the regression model, was high or low in 

value, we could examine its effects on the discriminability of these two options23,24. (‘Third 

option’ here refers to any option which is unchosen; each trial is included twice in the 

analysis, with each unchosen option becoming the ‘third’ option once). Crucially, when the 

left-out third option had a low pO (red datapoints in Fig. 2a), discriminations between the 

values of the remaining two options appeared better than was the case when the third option 

had a high pO (blue datapoints in Fig. 2a). This was again found to be true in subject 

behavior (Fig. 3a), reflected by a significant difference in the slopes of the regression lines 

on both stimulus and action attributes (T-test on difference of slopes between lines; 

T(18)=3.17, p=0.0053 (stimulus), T(18)=2.45, p=0.025 (response)).

Notably, this effect replicates observations from a recent study of value-guided choice, and 

can explained in the context of divisive normalisation23. However, it is also seen in our 

hierarchical competition model, where divisive normalisation is applied within-attribute 

rather than on integrated values. Moreover, the observed response pattern violates the axiom 

of independence of irrelevant alternatives, and so could not be predicted by softmax or 

simple value accumulator models (Supplementary Fig. 3a). These data indicate that a 

comparison of different options is fundamentally dependent upon what other alternatives are 

available to the subject.

We next split the third option based not upon its integrated value (pO) but instead based 

upon its stimulus value (pS; Fig. 2b) or its action value (pA; Fig. 2c). In doing so, we found 

that the distractor effect in the model’s choices was restricted to the same attribute used to 

perform the split. This ‘within-attribute distractor effect’ is a consequence of a normalisation 

applied at the level of within-attribute competition rather than at the level of integrated 

option values. By contrast, in alternative models where integrated values (pO) were 

divisively normalised prior to comparison, distractor effects were distributed equally across 

both attributes, irrespective of which attribute was used to perform the split (Supplementary 

Fig. 3c).

We therefore asked whether the distractor effect occurred selectively within-attribute in 

subject behavior, or was distributed equally across both attributes. We found the stimulus 

value of option three affected subjects’ ability of discriminate between stimulus values of 

options one and two (T(18)=2.51, p=0.021), but not their action values (T(18)=0.82, p=0.82) 

(Fig. 3b). Likewise, the action value of option three affected action (T(18)=3.18, p=0.0052) 

but not stimulus discriminations (T(18)=1.78, p=0.092) (Fig. 3c). Collapsing across both 

stimulus and action analyses, this resulted in a significant interaction between distractor 

effect magnitudes on different attributes, and the attribute used to perform the split 

(T(18)=3.54, p=0.0023). Similar behavioral observations were also made without use of a 

regression analysis, by examining raw choice probabilities (Fig. 3d; Supplementary Fig. 5). 

In Figure 3d, we focus on trials where stimulus value difference on options 1 and 2 was 

approximately equal and opposite in sign to action value difference on options 1 and 2. The 

probability of choosing the option with higher stimulus value (and hence lower action value) 

decreased when option 3 had a high stimulus value or low action value, but increased when 
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option 3 had a high action value or low stimulus value (interaction in two-way ANOVA, 

[attribute * high/low]: F(1,72) = 16.62, p=0.00017)).

The within-attribute distractor effect we observe cannot be explained by models in which 

only integrated values are compared to solve the task. If such a model were true, then 

distractor effects would be spread equally across all attributes, irrespective of which attribute 

was used to parse the third option. Instead, the evidence highlights a dependence on 

comparisons being made within-attribute, shown formally by the comparison of the 

hierarchical model to alternative models (Supplementary Figs. 3-4; Supplementary Note). 

We conclude that there is a contribution of within-attribute comparison in our multi-attribute 

choice task.

RT is more influenced by one attribute than another

We next sought to isolate a signature of hierarchical competition in both model and subject 

reaction times. To enable this, we applied multiple regression with the logarithm of reaction 

times (RTs) as the dependent variable and the value of different options as independent 

variables. In a first analysis of both model and subjects’ RTs, we entered integrated values 

(pO) as explanatory variables. Unsurprisingly, RTs scaled with trial difficulty. When the 

chosen value was higher, choices were made more rapidly (model: β=−0.81+/−0.01, mean +/

− s.e. across 10 simulations; behavior: β=−1.13+/−0.12 across subjects; T(18)=

−9.22,p=3.06*10−8), whilst choices were slower when the best unchosen value increased 

(model: β=1.10+/−0.01; behavior: β= 0.31+/−0.07; T(18)=4.47,p=2.96*10−4). Thus, reaction 

times decreased when (pOchosen-pObest unchosen) increased (model: β=−1.91+/−0.02; 

behavior: β= −1.46+/−0.18; T(18)=−8.00, p=2.44*10−7). The influence of the worst 

unchosen value on RTs was also significant (model: β=1.42+/−0.03; behavior: β= 0.22+/

−0.09; T(18)=2.47,p=0.024).

The above analysis is predicated on the idea that there is integration across attributes prior to 

comparison. In our task, however, this appears inconsistent with the presence of a significant 

within-attribute distractor effect. Based on the hierarchical model, we hypothesised that on 

trials where attributes conflict – that is, on trials where pS values favor one alternative but 

pA values favour another – the two attributes might compete with one another when guiding 

the choice, with one attribute becoming more relevant for guiding behavior. While the 

relevant attribute would vary from trial to trial, we could nevertheless use the subject’s 

choice to disclose it. In trials where (pSchosen>pSbest unchosen and pAchosen<pAbest unchosen), 

we labelled stimulus as the ‘relevant’ attribute and action as ‘irrelevant’ (or strictly, ‘less 

relevant’). By contrast, if (pSchosen<pSbest unchosen and pAchosen>pAbest unchosen), we labelled 

action as ‘relevant’ and stimulus as ‘irrelevant’. In the model, competition for relevance is 

realised by the node labelled ‘attribute competition’ in Supplementary Figure 2.

The crucial question in this context is whether reward probabilities on the ‘relevant’ attribute 

explain more variability in reaction time than on the ‘irrelevant’ attribute, or instead whether 

RTs are better explained by the ‘integrated’ value difference used in our initial analysis. We 

again applied multiple regression, but now all three forms of value difference competed for 

variance in explaining RTs (see Methods for details). In the model, we found that the 

‘relevant’ attribute probability difference had a greater influence on reaction times than the 
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‘irrelevant’ probability difference (Fig. 2d, blue/green bars). Moreover, these two terms 

explained away the contribution of pO value difference to model reaction time (Fig. 2d, red 

bar). Importantly, these predictions were not made of simpler models of evidence 

accumulation (Supplementary Fig. 4).

We applied the same analysis to subjects’ RTs. Whereas the difference on reward 

probabilities on the relevant attribute influenced RTs (β=1.46+/−0.31; T(18)=

−4.62,p=2.13*10−4), neither the difference in probabilities on the irrelevant attribute 

(β=0.68+/−0.37; T(18)=−1.48,p=0.08) nor the Bayesian integrated value difference 

(β=0.06+/−0.35; T(18)=−0.19,p=0.84) had a significant impact (Fig. 3e). Consequently, the 

difference on the ‘relevant’ attribute showed a significantly greater effect than the 

‘irrelevant’ difference (paired T(18)=−3.43, p=0.003). To assess the robustness of this result, 

we applied Levene’s test and confirmed that there was no significant difference in variances 

between the two sets of parameter estimates (F1,36=0.12, p=0.74). We also confirmed the 

effect remained (paired T(18)=−2.45, p=0.02) after normalising all the regressors to account 

for any difference in their magnitude. Additionally, these effects remained evident even 

when we considered alternative rules for constructing pO (mean, multiplication or sum – 

Supplementary Table 1).

One potential final concern is that hierarchical competition could be replaced by a simpler 

model that retained within-attribute comparison but randomly selected a given attribute to 

become relevant on each trial. We tested such a possibility by running a formal model 

comparison on prediction of subjects’ choice behavior, comparing this simpler ‘random 

attribute’ model with a hierarchical competition model (Supplementary Note). Model 

evidence favoured the hierarchical model in 16 out of 19 individual subjects, reflected 

across the population by a significantly lower Bayesian Information Criterion (BIC) in the 

hierarchical model compared to a ‘random attribute model’ (T(19)=−3.24, p=0.0046; mean 

+/− s.e: ΔBIC = 19.56 +/− 6.05).

The behavioral findings we highlight are inconsistent with the hypothesis that subjects 

equally weight both sources of information on each trial. They instead indicate that subjects 

rely more heavily on one source of evidence than another on each trial, which we here term 

the ‘relevant attribute’. This accords with our model, in which competitions occur 

hierarchically. In the next section, we consider the neural basis by which these competitions 

are realised.

Intraparietal sulcus and attribute relevance competition

We used fMRI data to investigate which brain regions subserve multi-attribute choice, tying 

our analysis to the modelling framework above. A unique feature of our model (absent from 

‘integrate-then-compare’ frameworks) is that the outputs of within-attribute competitions 

themselves form the inputs of a competition for which attribute becomes ‘relevant’ in the 

current trial. By tying one attribute to stimuli, and another attribute to actions, we capitalised 

upon recent reported dissociations between neural structures encoding action and stimulus 

values in cortical12 and subcortical25,26 structures. As the competition for relevance was 

resolving, this would upregulate the relevant within-attribute competition and downregulate 
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the irrelevant one. This might be reflected by changes in functional connectivity between 

regions implicated in attribute comparison and those involved in lower-level competition.

A region that represents the ‘attribute competition’ process should compare the value 

difference on the ‘relevant’ attribute with the same value difference on the ‘irrelevant’ 

attribute. We therefore hypothesised this region would be brought out using the contrast 

(pCh irrelevant – pBUnCh irrelevant) – (pCh relevant – pBUnCh relevant), where pCh is the 

chosen probability on a specific attribute and pBUnCh is the best unchosen probability on a 

specific attribute. This contrast reflects the difference in relative ‘attribute goodness’ 

between irrelevant and relevant attributes. Importantly, it controls for areas simply encoding 

‘integrated value difference’, due to the subtraction of relevant values from irrelevant 

values. Analogous to recent findings concerning value difference coding8,10,27,28, it assumes 

that a ‘relevance competition’ signal reflects the difference of inputs that determine which 

attribute was more relevant (namely, within-attribute differences).

We first tested whether this contrast emerged from the ‘attribute competition’ node in our 

hierarchical model, by simulating fMRI data directly from activity within this node 

(Supplementary Note). We used similar simplifying assumptions to those used in other 

studies, namely that activity would be greatest in the node whilst competition was still being 

resolved, and this competition would continue until a decision was reached8,29. We 

convolved the node’s total activity on each trial with a hemodynamic response function, 

added observation noise, and then regressed the simulated data against pCh relevant, 

pBUnCh relevant, pCh irrelevant and pBUnCh irrelevant. All four elements of our contrast were 

found to affect the simulated fMRI signal in the direction specified by our ‘attribute 

comparison’ contrast (Fig. 4). Hence (pCh relevant - pBUnCh relevant) was predicted to have a 

negative regression coefficient on fMRI data, but (pCh irrelevant - pBUnCh irrelevant) was 

predicted to have a positive regression coefficient. This is a consequence of competition 

between attributes being greater on trials where (pCh relevant - pBUnCh relevant) is closer in 

value to (pCh irrelevant - pBUnCh irrelevant). It is analogous to the hypothesis that regions 

implementing a choice comparison process via evidence accumulation may exhibit greater 

activity when choice alternatives are closer in value8,29.

We therefore searched for brain regions that encoded the contrast (pCh irrelevant – 

pBUnCh irrelevant) – (pCh relevant – pBUnCh relevant). We found bilateral activation in the 

intraparietal sulcus (IPS) correlated with this contrast, with the left IPS (peak Z = 3.65, MNI 

(46, −34, 42)) surviving whole-brain correction (p=0.0023, cluster-corrected), and the right 

IPS showing a large but sub-threshold response in a similar location (Fig. 5a; Supplementary 

Table 2; unthresholded Z-statistic maps for all contrasts are available for download at http://

neurovault.org). This was the only region to survive this contrast with whole-brain 

correction. A wider network of regions (notably including bilateral superior frontal sulcus) 

was present at an uncorrected threshold (Supplementary Fig. 6). Next, we extracted the 

timecourse from IPS with a method that controls for circularity in statistical inference30 by 

defining each subject’s region of interest for analysis from the remaining (n-1) subjects’ 

data31. From this timecourse, it was apparent that all the necessary components of relevance 

competition were present in IPS signal. On the relevant attribute, IPS BOLD fMRI signal 

correlated negatively with the value of the chosen option (Fig. 5b, dark blue), and positively 
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with the value of the best unchosen option (Fig. 5b, green). This was shown formally by a 

negative effect of (pCh relevant - pBUnCh relevant) (T(18)=−2.83, p=0.011). This is similar to 

signals previously observed in IPS in value-guided choice tasks, in which only one attribute 

or integrated value was considered27,32. As predicted, however, on the irrelevant attribute 

this pattern was reversed: IPS signal correlated positively with the value of the chosen 

option (Fig. 5b, red), and negatively with the value of the best unchosen option (Fig. 5b, 

cyan). This was again shown formally by a positive effect of (pCh irrelevant - 

pBUnCh irrelevant) (T(18)=2.50, p=0.022). These effects are based upon contrasts of 

parameter estimates from a general linear model (model 1, see methods) which partials out 

any covariance between irrelevant and relevant attributes. This signal profile would not be 

predicted for a region that is comparing integrated values, but is instead predicted for a 

region that selects which feature of a decision to attend.

In a further analysis, we also found a positive correlate of log(reaction time) in the same 

region, as is also predicted by a dynamical model. Importantly, however, the effects shown 

in Fig. 5b survived the inclusion of log(reaction time) as a coregressor (supplementary Fig. 

7), as did predictions from the hierarchical model.

It is also notable the signed ‘relative attribute difference’ is highly correlated with the 

absolute (unsigned) difference in within-attribute differences, i.e. ȣ(pCh irrelevant – 

pBUnCh irrelevant) – (pCh relevant – pBUnCh relevant)∣ (r-values across subjects ranged from 

0.91 to 0.99). This mirrors an observation made previously in the context of value 

comparison8. Disambiguating signed and unsigned signals is therefore not possible with the 

present study design.

Next, we reasoned that if IPS forms part of a hierarchical comparison process, then this 

should be reflected in its functional connectivity with other brain regions in a manner 

dependent upon which attribute was currently relevant. To test this hypothesis, we used a 

psychophysiological interaction analysis33 that compared IPS functional connectivity with 

the rest of the brain as a function of whether the stimulus attribute was currently relevant, or 

whether the action attribute was currently relevant. On trials where stimulus was relevant, 

IPS exhibited greater functional connectivity to a bilateral sector of anterior orbitofrontal/

lateral frontopolar cortex (Fig. 6a; right peak Z=3.52, MNI (36, 52, −10); left peak Z=2.90, 

MNI (−38, 52, 10)). This is a notable finding in that IPS has direct connections to OFC via 

the third branch of the superior longitudinal fasciculus34, and lesions to OFC are known to 

impair stimulus- but not response-based value-guided choice12. By contrast, on trials where 

action was relevant, IPS exhibited greater functional connectivity to bilateral putamen (Fig. 

6b, left panel; left peak Z=−3.46, MNI (−18, 12, 2); right peak Z=−2.69, MNI (26, 10, 0)), a 

portion of striatum previously implicated in habitual action-guided choice25,26. The finding 

that both sets of activations occur bilaterally considerably reduces their probability of being 

false positives.

Finally, at the time of feedback the ventral striatum encoded a classic reward prediction 

error, signalling reward outcomes positively and predictions of reward negatively (on both 

relevant and irrelevant attributes; supplementary Fig. 8a/b). By contrast, the signal encoded 

in the IPS can also be interpreted as a prediction error, but acting on relevance rather than 
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value or reward (supplementary Fig. 8c/d). It encoded reward negatively, but the prediction 

of reward positively on the relevant attribute and the prediction of reward negatively on the 

irrelevant attribute. This signal can be construed as a prediction error on attribute relevance. 

If reward is greater than expected, more attention would be given to the relevant attribute on 

future trials, and less attention to the irrelevant attribute.,It should be noted that this IPS 

relevance prediction error is inverted in sign, in the sense that a more positive attribute 

prediction error elicits a greater deactivation at the time of outcome.

In summary, at the time of the decision, IPS carried signals that implicate it in selecting 

which attribute is relevant, and changed its functional connectivity in accordance with an 

upregulation of lower-level competition. At the time of outcome, IPS showed an (inverted) 

prediction error signal suggestive of a role in relevance learning. These combined data 

provide evidence for a role for the IPS in selecting which attribute to attend to on any given 

trial.

Medial prefrontal cortex and integrated value comparison

If the IPS carries a signal that reflects a competition for attribute ‘relevance’ then do any 

other brain regions reflect a more traditional ‘integrated’ value competition? This can be 

tested by looking at a different contrast: (pCh relevant – pBUnCh relevant) + (pCh irrelevant – 

pBUnCh irrelevant). This contrast correlated negatively with BOLD fMRI signal in the dorsal 

medial frontal cortex (dMFC), in the vicinity of preSMA/paracingulate sulcus (Fig. 7a; 

Supplementary Table 3; peak Z=−3.85, MNI (0, 38, 42)). This is in close proximity to a 

locus previously implicated in a comparison of integrated values during action selection8,35. 

Notably, this region is frequently co-activated with the IPS – both IPS and dorsal MFC are 

recruited more strongly by trials in which values are close together, and so correlate 

negatively with the value of the chosen option minus the unchosen option8,29. It is therefore 

particularly striking in our study that whereas dMFC and IPS encode variables in the same 

direction on the relevant attribute, they do so in the opposite direction on the irrelevant 

attribute (compare Figs. 5b and 7b).

Finally, we asked what signals are encoded in ventromedial prefrontal cortex (VMPFC), a 

region commonly recruited in studies of value-guided choice36,37, but in which different 

studies have observed different task variables8,27. In the present study, we found that 

VMPFC encoded a chosen value signal, selectively for the relevant but not irrelevant 

attribute (Supplementary Fig. 9).

Discussion

It is commonly assumed that a key step in how the brain supports value-guided choice is 

through an integration of the different features of an option into a single value, so that values 

can be compared with one another in a common currency. Such a decision schema has 

obvious appeal, not least because it can support comparison of incommensurable items11, 

but it cannot explain several key behavioral observations. Among these are the effects of 

within-attribute similarity on choice, suggesting some forms of comparison are enacted 

before integration, as well as the effects of relevance of a particular attribute modulating 
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reaction times. Subject behavior in our multi-attribute decision paradigm showed both these 

effects, most strikingly via a novel within-attribute distractor effect.

To explain our data we adopted a fundamentally different approach to value comparison, 

suggested previously in the behavioral literature16-19 but notably absent from many 

neuroscientific studies. In this scheme, competition (via mutual inhibition10,21) occurs not 

just at the ‘higher level’ of integrated values, but also at lower levels (within attribute) and 

between levels (attention towards attributes). This was necessary to capture all key features 

of our behavioral data, which were not captured by more simple models of evidence 

accumulation. Apart from successfully explaining behavioral data, our model gained extra 

validity by explaining task-related neural activity as well as functional interactions between 

brain regions involved in supporting value comparison, indexed via fMRI.

Hierarchical competition invokes the notion of a canonical computation performed across 

multiple brain regions, and it is implicit that competition in different brain regions takes 

place in different frames of reference. Such hierarchies mirror those proposed in the domain 

of rule-based action selection, or tasks requiring cognitive control38. In our task, the IPS 

carries a signal reflecting competition in an attribute frame of reference, whereas medial 

prefrontal structures carry signals reflecting competition in a frame of reference of options. 

Such a clear dissociation between computations in IPS and dMFC has not been described 

previously, and it is notable that these areas have typically coactivated in studies of decision 

making8,29 , particularly where there is increased choice difficulty (decreased value 

difference). The portion of IPS identified in our study is ideally placed, in terms of 

anatomical connectivity to prefrontal cortex34,39 and its established role in attentional 

reorienting40, to compute which attribute to attend on a particular trial. Indeed, in number 

comparison tasks where the relevant and irrelevant dimensions are explicitly cued rather 

than internally generated, IPS only reflects value differences within the relevant, not the 

irrelevant, competition41. When information is presented from two different sources whose 

distributions can be formally specified, fMRI signal in IPS reflects the Kullbeck-Leibler 

divergence (or degree of competition) between these two sources of information42.

However, we do not argue that IPS performs a general role of arbitrating between attributes 

at the top level of hierarchical competition. In our experiment subjects had to trade a 

competition that occurred in stimulus space in the OFC against a competition that occurred 

in action space in the motor system. IPS is ideally placed to resolve such a competition due 

to its monosynaptic projections with both structures. It is clear that unlike OFC or vmPFC, 

IPS has access to values selective for spatial locations, for specific actions and specific 

stimuli. Notably, in circumstances where both attributes can be represented in stimulus or 

goal space, deficits in attribute comparison can be induced by lesions to vmPFC43. We 

therefore argue that attribute comparison is not a unique process with a single cortical focus, 

but a striking example of a general rule of competition in cortical processes. The critical 

neural substrate will depend on the relevant features of the decision at hand.

Similarly, the frames of reference and functional roles of other brain regions contributing to 

task performance reflect both their anatomical connectivity and functional specialisation. 

For example, lateral OFC is likely to play a role in competition between stimuli given that it 
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receives a highly processed sensory input44 and is critical for tasks involving stimulus but 

not action comparison12. In keeping with this formulation we observed increased functional 

connectivity of OFC with IPS on trials where stimulus probabilities became relevant. By 

contrast a dorsolateral portion of the striatum is likely to play a role in competition between 

actions, given evidence that it possesses anatomical connectivity with motoric structures45 

and is implicated in habitual action selection25,26. This region showed increased functional 

connectivity to IPS on trials where action probabilities became relevant. Finally, both dorsal 

and ventral medial frontal cortex are implicated in competition between values8,10,11,27,28,35. 

In the present study, integrated value comparison signals were particularly prominent in 

dMFC at the time of choice and like the IPS this region has monosynaptic connections to 

both OFC and motoric structures.

Recent studies have examined distractor effects in value-guided choice tasks with multiple 

options, but from a different perspective to that examined here. Louie et al. isolated 

distractor effects in subjects who chose between rewards of different value. As in our study, 

high value distractors impaired discrimination between two alternative options23. They 

proposed a divisive normalisation of values during choice. In our model, divisive 

normalisation captured distractor effects (Supplementary Figs. 3-4), but because of the novel 

within-attribute distractor effect, we place it at the level of attributes instead of the level of 

integrated values. Indeed, normalisation may also reflect a canonical mechanism operating 

at all levels of a processing hierarchy46. Future models may unify the processes of 

competition and normalisation in a single framework. Chau et al., in a task where decisions 

are made under time pressure, reported a distractor effect that operates in the opposite 

direction, where high-valued third options are less distracting than low-valued third options. 

In their task distractors are made transiently available and then removed from the decision47. 

Such an effect can be explained by the increased pulse of inhibition introduced into a 

competitive decision-making network by high-value distractors, resulting in slowing of a 

decision that renders it more accurate. We find a similar (albeit weak) effect in our LCA 

model when divisive normalisation is switched off, and competition between options is high 

(Supplementary Fig. 3b). The conditions under which normalisation occurs during 

competition remain debated48, but one hypothesis is that divisive normalisation occurs over 

a different time-course than competition via mutual inhibition, and may not occur where one 

option is removed shortly after decision onset. Finally, the within-attribute distractor effect 

may mirror the well-known ‘similarity’ effect in multi-attribute choice, where introducing a 

new option reduces the probability of choosing options that are similar on multiple attributes 

to those that are dissimilar49. In our model, similar options (with small within-attribute 

differences) will be downweighted by the attention competition relative to dissimilar options 

(with large within-attribute differences). Future work could directly test the ability of the 

model to reproduce this effect, alongside other known effects in multi-attribute choice such 

as the ‘attraction’ and ‘compromise’ effects17.

In summary, we propose that instead of competition being an isolated ‘component process’ 

in value-guided decision making, it occurs at multiple, distributed levels of representation. 

This hierarchical competition account of decision making reconciles conflicting behavioral 

observations which suggest that comparison occurs within-attribute, as well as on integrated 
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values. Our account also explains observations where competition is observed in different 

frames of reference within different brain structures, as well as how interactions between 

brain regions are modulated during a task50. More broadly the findings imply that 

competition via mutual inhibition represents a canonical computation46 that subserves 

distributed decision-making processes throughout the brain, rather than a process occuring 

solely at a single comparator node.

Online Methods

Experimental task

24 human volunteers (age range 20-49, 13F, 11M, recruited from a subject pool at 

University College London) participated in the experiment. Inclusion criteria were based on 

age (minimum 18 years, maximum 50 years), and screening for history of neurological or 

psychiatric illness. The sample size was based on similar sample sizes in recent fMRI 

studies of decision-making and methodological recommendations in the literature. 2 subjects 

failed to reach the requisite learning criterion during training ; 3 further subjects showed 

excessive head motion during fMRI (based on the motion correction report in FSL version 

6.00). These subjects were excluded, leaving 19 subjects in all subsequent behavioral and 

neural analysis. The experimental protocol was approved by the UCL local research ethics 

committee, and informed consent was obtained from all subjects included.

Training—Subjects learnt that certain stimuli and certain responses were more predictive 

of reward by performing pairwise choices within-attribute (i.e. stimulus vs. stimulus, action 

vs. action). In each ‘action training’ trial, two locations from eight were highlighted 

onscreen and the subject aimed to select the better of the two actions to receive positive 

feedback (smiley face). Each spatial location was tied to a button press with a specific 

forefinger on a keyboard. In each ‘stimulus training’ trial, two stimuli from eight were 

presented in random spatial locations (either side of a fixation point), and subjects aimed to 

select the better of the two stimuli. Subjects performed four training blocks outside the 

scanner (two stimulus, two action, each consisting of a minimum of 70 trials and terminating 

once subjects had reached a performance criterion of 90% correct responses). Stimuli and 

actions were counterbalanced across subjects.

During training, feedback was delivered deterministically, according to whether the subjects 

chose the better of the two options. Deterministic feedback ensured subjects learnt equally 

about both the selected and unselected options throughout training (which would not be the 

case if reward was delivered probabilistically on the selected option). The rank of the best 

through to the worst options was translated into a probability of receiving reward (termed pS 

for stimuli, pA for responses) in the main experiment – scaled from worst to best as 

(0.1,0.2,0.3,0.4,0.6,0.7,0.8,0.9). These probabilities are almost perfectly collinear (r=0.99) 

with the experienced frequency of reward in the training phase (supplementary Fig. 10).

Main experimental task—Inside the scanner, subjects performed 200 trials of a three-

option choice task, in which stimuli were pseudorandomly paired with different actions. 

Subjects were instructed to weight both stimulus and action attributes equally in making 

their choice. It was never the case that the same stimulus (or action) was available on more 
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than one option. Trials were selected such that key variables of interest for neural (and 

behavioral) analysis were decorrelated (as far as possible) in the design. In this schedule, as 

expected by chance, the best stimulus and best action suggested conflicting responses on 

66% of trials. Within these trials, only infrequently (5% of trials) did the best pO occur for 

options with neither the best pS or pA; instead, the best pO typically aligned with the best 

pS or best pA (59% and 36% of trials, respectively). Across all trials, this meant that the best 

pO aligned with the best pS on 73% of trials, and with the best pA on 58% of trials. Despite 

this slight asymmetry between best pA/pS being coincident with best pO, subjects showed 

no systematic bias towards using one attribute over another (supplementary Fig. 1). The 

same schedule was used for each subject, but with high/low value stimulus identities and 

high/low value actions counterbalanced across subjects. Full details of schedules used can be 

obtained by examining the raw datafiles and analysis scripts (provided as supplementary 

material). Task timings are shown in Fig. 1c. Subjects could view freely (i.e. they were not 

required to hold fixation) during the decision phase.

True reward probabilities for each option were based on a posterior probability of reward 

(pO) that optimally weighted pS and pA for each alternative, using Bayes’ Rule:

Behavioral data analysis

Trials on which no response was made within the 3s time limit (on average <3% of total 

trials) were removed from subsequent behavioral analysis. The same analysis was applied to 

both predictions from the computational model of the task (Fig. 2) and subject behavior 

(Fig. 3).

Preference for using stimulus or action attribute (supplementary Fig. 1)—To 

estimate the average weight assigned to using the stimulus or action attribute, we fit a 

behavioral model to subjects’ choices that contained a free parameter, ϒ, which was greater 

in subjects who used stimulus information more heavily, and a free choice parameter ϐ. ϒ 

serves to transform the true stimulus and action probabilities of option i into subjective 

‘weights’ via the following formulae:

Each individual’s ϒ and ϐ parameter was fit via maximum likelihood estimation.

Logistic regression of choices, revealing distractor effects (main Fig. 2(a)-(c)/
3(a)-(c))—To estimate the influence of each stimulus and action on subjects’ choices, we 
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performed a binomial logistic regression analysis. To perform this analysis in a manner 

amenable to revealing a third-option distractor effect, we performed the logistic regression 

on pairs of options taken from the three-option choice data. Within the logistic regression 

model, each trial featured twice: once with the chosen option and unchosen option A 

included, and again with the chosen option and unchosen option B included. As shown 

before23,24, this allows interrogation of the regression coefficients as a function of when the 

option left out of the regression was of high or low value.

The subject’s choice (i.e. chose option 2 coded as 1, chose option 1 coded as 0) was the 

dependent variable, and as independent variables we included separate indicator variables 

for each stimulus and each action for option 1 and 2 (valued 1 when that stimulus/action was 

present for option 1 or 2, and 0 otherwise). However, such an approach leads to rank 

deficiency in the design matrix, as the linear combination of each stimulus/action sums to 

produce a constant term. To finesse this, we removed the regressor corresponding to the 

eighth (best) stimulus and action for both options 1 and 2 (that is, we removed columns 8, 

16, 24 and 32 from the design matrix), and added a single constant term. We then 

constructed contrasts of parameter estimates that recovered the mean parameter estimate of 

each stimulus/response, collapsed across options 1 and 2 (Supplementary Fig. 11).

This was repeated on subsets of datapoints: where the third (left-out) option was either high 

(>67th percentile) or low (<33rd percentile) in integrated value (main Fig. 2a/3a), high or low 

in stimulus probability (main Fig. 2b/3b), or high or low in action probability (main Fig. 2c/

3c). The datapoints in these figures show the mean +/− s.e. (across subjects) of the contrasts 

of parameter estimates from the logistic regression.

Reaction time regression (main Fig. 2d/3e)—We assessed the influence of reward 

probabilities on reaction times using multiple linear regression. Log(reaction time) was used 

as the dependent variable as this approximates a normal distribution. In a first analysis, we 

only investigated the role of integrated values on reaction time. 4 regressors were included – 

(i) the integrated value of the chosen option (pOchosen), (ii) the integrated value of the best 

unchosen option (pObest unchosen), (iii) the integrated value of the worst unchosen option 

(pOworst unchosen), and (iv) a constant term.

In a second analysis, we investigated the separable contributions of value difference on the 

‘relevant’ attribute, the ‘irrelevant’ attribute, and the integrated value, on trials in which 

‘relevance’ could be defined (where stimulus and action conflicted, and subjects either 

selected the best stimulus or the best response). 10 regressors were included in total; (i) a 

constant term, (ii)-(iv) the chosen, best unchosen and worst unchosen values on the relevant 

attribute; (v)-(vii) the chosen, best unchosen and worst unchosen values on the irrelevant 

attribute; (viii)-(x) the chosen, best unchosen and worst unchosen integrated values. 

Contrasts of parameter estimates were used to calculate the influence of the value difference 

on chosen ad best unchosen values on reaction time (i.e. [1 −1] contrast on chosen and best 

unchosen values).

Complete anonymised behavioral datasets and MATLAB analysis scripts are provided as 

supplementary material.
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Computational model

We implemented a hierarchical leaky, competing accumulator model to capture behavioral 

and neural effects observed in our multi-attribute choice task. In the main model (results 

presented in main Figs. 2 and 4), we assumed that evidence accumulated and competed on 

each attribute (within-attribute competition), there was competition over which attribute to 

attend (between-attribute competition), and there was competition on integrated values to 

select the winning option.

Within-attribute evidence accumulation was modelled using the following dynamical 

equation:

(eq. 1)

where: El(t) is a 3×2 matrix (superscripted with l to denote lower-level of hierarchical 

model), containing accumulated evidence on each option (row) and attribute (column) at 

time t;

M is a 3×2 matrix, containing the within-attribute probabilities, divisively normalised 

within-attribute (that is, the columns of M sum to 1);

Sl is a 3×3 matrix, containing off-diagonal elements that determine competition (kl), and on-

diagonal elements that determine the rate of self-decay (dl);

C is a 3×3 contrast matrix that subtracts the mean of all other alternatives from the firing 

rate of each element (on-diagonal elements set to 1, off-diagonal elements set to −0.5);

N(0,σ2dt) is a 3×2 matrix containing Gaussian noise, with each element drawn from the 

normal distribution with mean 0 and variance σ2dt;

0 is a 3×2 matrix of zeros.

Accumulation of evidence integrated across attributes was then modelled using the 

following equation:

(eq. 2)

where: Eh(t) is a 3×1 matrix (superscripted with h to denote higher-level of hierarchical 

model), containing accumulated evidence on each option at time t;

Sh is a 3×3 matrix, containing off-diagonal elements that determine competition (kh), and 

on-diagonal elements that determine the rate of self-decay (dh);

w(t) is a 2×1 vector, whose elements sum to 1 and are ≥0, that determines the relative weight 

assigned to each lower level attribute;

0 is a 3×1 matrix of zeros.
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Finally, the weight assigned to each attribute is assumed to be calculated instantaneously by 

applying a softmax transformation to the within-attribute difference of the best and 2nd best 

option on each attribute (as suggested by the signal observed in the intraparietal sulcus at the 

time of making the decision):

(eq. 3)

Ediffi refers to the difference between the highest value in El(t) and next highest value in 

El(t) for the i-th attribute. ϐ is a free parameter that determines the influence of within-

attribute differences on attention. When wi(t) is close to 0.5, both stimulus and action have 

an influence on guiding choice; when it is close to 1, then w~i(t) will be close to 0, and only 

the i-th attribute will have influence on choice.

A decision was made when any value of Eh exceeded a decision threshold ϑ. The reaction 

time of the model was the time at which this occurred plus a non-decision time, tnd.

The model has eight free parameters. We assumed that the dynamics of the leaky, competing 

accumulators were the same both within- and between- attributes (that is, kh = kl and dh = 

dl), reducing the parameter space to six parameters. We performed a grid search across 

parameter space to fit basic properties of subject behavior – namely, the distribution of 

reaction times and the error rates of an average subject. The fit parameters are listed below. 

However, it is important to note that the key behaviors of the model – that is, the within-

option distractor effect and the effect on reaction times – are qualitative rather than 

quantitative features of the model. These properties did not change fundamentally as a 

function of the parameter fit.

Model parameters were as follows (search grid resolution and limits specified in square 

brackets):

Decay rate, dh = dl = −0.1 [−0.5:0.1:0]

Inhibitory competition, kh = kl = −0.05 [−0.08:0.01:0]

Non-decision time, tnd = 300ms [100:100:500]

Threshold, ϑ = 200 [100:100:1100]

Input noise, σ = 1 [0:1:10]

Between-attribute competition softmax temperature, ϐ = 0.1. [0.1:10, logarithmically spaced 

in 10 bins]

All modelling was implemented in MATLAB (The Mathworks, Natick, MA); MATLAB 

code for models is available on request. For comparison with alternative models, and details 

of fMRI simulations, see Supplementary Figures 3-4 and Supplementary Note.

Hunt et al. Page 18

Nat Neurosci. Author manuscript; available in PMC 2015 December 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



fMRI data acquisition

FMRI data—Whole-brain T2*-weighted echo-planar imaging (EPI) data were acquired 

using a Siemens Trio 3T scanner, using a 32-channel headcoil. The sequence chosen was 

selected to minimise dropout in both orbitofrontal cortex and amygdala52. Each volume 

contained 43 slices of 3mm isotropic data; echo time = 30ms, repetition time = 3.01s per 

volume, echo spacing of 0.5ms, slice tilt of −30° (T>C), Z-shim of −1.4 mT/m*ms, phase 

oversampling of 13%, ascending slice acquisition order. The mean number of volumes 

acquired per subject was 815 (the total number of volumes acquired varied depending upon 

participants’ reaction times). The first 5 volumes of each dataset were discarded to account 

for T1 saturation effects, and so the experiment was not started until these 5 volumes had 

been acquired.

Structural data—Whole-brain T1-weighted structural data were acquired using a 3D 

MDEFT routine with sagittal partition direction, 176 partitions, field of view=256×240, 

matrix=256×240, 1mm isotropic resolution, TE=2.48ms, TR=7.92ms, flip angle 16°, 

inversion time=910ms. Total acquisition time was 12 minutes 51 seconds.

Field maps—Whole-brain field maps (3mm isotropic) were acquired to allow for 

subsequent correction in geometric distortions in EPI data at high field strength. Acquisition 

parameters were 10ms/12.46ms echo times (short/long respectively), 37ms total EPI readout 

time, with positive/up phase encode direction and phase-encode blip polarity −1.

fMRI analysis

FMRI data processing was carried out using FEAT (FMRI Expert Analysis Tool) Version 

6.00, part of FSL (FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl)53. Region-of-

interest timeseries analysis was performed using custom-written scripts in MATLAB (The 

Mathworks, Natick, MA).

Preprocessing—The following pre-statistics processing was applied in FSL; motion 

correction using MCFLIRT; unwarping of B0 slice-timing correction using Fourier-space 

time-series phase-shifting; non-brain removal using BET; spatial smoothing using a 

Gaussian kernel of FWHM 7.0mm; highpass temporal filtering (Gaussian-weighted least-

squares straight line fitting, with sigma=50.0s).

First-level general linear model—Time-series statistical analysis was carried out using 

FILM (FMRIB’s Improved Linear Model) with local autocorrelation correction. Two event-

related models were specified – model 1 with solely task-based regressors (results shown in 

main Figs. 5/7, Supplementary Figs. 6-9, Supplementary Tables 2 and 3), and model 2 to 

specify the psychophysiological interaction (shown in main Fig. 6).

Model 1 contained 14 regressors in total. The first eight were related to the decision phase of 

the trial; the next two were related to the response; the final four were related to feedback. 

The regressors were:

a) DECIDE_ONSET: 1 during decision (from decision until response), 0 outside 

decision.
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b) DECIDE_RELATT_CHPROB: Same timings as DECIDE_ONSET; parametric 

regressor for probability of the chosen option being rewarded on relevant 

attribute (chosen pS for ‘stimulus relevant’ trials, chosen pA for ‘action 

relevant’ trials). Only trials in which stimulus and action attributes had different 

‘best’ options (and where one of these was selected) were included in this 

regressor.

c) DECIDE_RELATT_BEST_UNCHPROB: As (b), containing probability of best 

unchosen option on the relevant attribute.

d) DECIDE_RELATT_WORST_UNCHPROB: As (b), containing probability of 

worst unchosen option on the relevant attribute.

e) DECIDE_IRRELATT_CHOSEN_PROB: As (b), containing probability of 

chosen option on irrelevant attribute.

f) DECIDE_IRRELATT_BEST_UNCHPROB: As (b), containing probability of 

best unchosen option on irrelevant attribute.

g) DECIDE_IRRELATT_WORST_UNCHPROB: As (b), containing probability 

of worst unchosen option on irrelevant attribute.

h) DECIDE_EASY: Same timings as DECIDE_ONSET; value 1 on ‘easy’ 

decisions in which both stimulus and action indicate the same best option, 0 on 

other trials.

i) RESPONSE_ONSET: Value 1 during the 4-8s period when the response was 

onscreen, 0 outside this period.

j) RESPONSE_RIGHT>LEFT: Value 1 when a button was pressed with the right 

hand; -1 with the left hand; 0 outside this period. Stick function lasting 1s, time-

locked to response.

k) FEEDBACK_ONSET: Value 1 during 3s period when reward feedback was 

onscreen, 0 outside this period.

l) FEEDBACK_REWARD: Same timings as FEEDBACK_ONSET, value 1 if 

reward was delivered and 0 otherwise.

m) FEEDBACK_RELATT_CHPROB: Same timings as FEEDBACK_ONSET; 

parametric regressor containing probability of chosen option on relevant 

attribute. Only included for same trials as DECIDED_RELATT_CHPROB.

n) FEEDBACK_IRRELATT_CHPROB: As (m), but containing probability of 

chosen option on irrelevant attribute.

All regressors were convolved with FSL’s canonical gamma hemodynamic response 

function, and temporally filtered with the same high-pass filter applied to the FMRI 

timeseries. Temporal derivatives of all regressors were included to account for variability in 

the hemodynamic response function.

The following contrasts of parameter estimates were constructed, and reported in the main 

text:
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(i) Regions encoding value difference differentially across relevant and irrelevant 

attributes (main Fig. 5): (DECIDE_IRRELATT_CHPROB - 

DECIDE_IRRELATT_BEST_UNCHPROB) – (DECIDE_RELATT_CHPROB 

- DECIDE_RELATT_BEST_UNCHPROB)

(ii) Regions encoding value difference commonly across relevant and irrelevant 

attributes (main Fig. 7): (DECIDE_RELATT_CHPROB - 

DECIDE_RELATT_BEST_UNCHPROB) + (DECIDE_IRRELATT_CHPROB 

- DECIDE_IRRELATT_BEST_UNCHPROB)

(iii) Regions encoding a traditional reward prediction error, tied to the relevant 

attribute (supplementary Fig. 8a): (FEEDBACK_REWARD – 

FEEDBACK_RELATT_CHPROB)

(iv) Regions encoding an ‘attribute prediction error’ (supplementary Fig. 8c): 

(FEEDBACK_RELATT_CHPROB - FEEDBACK_IRRELATT_CHPROB)

Model 2 contained 17 regressors in total. The first two regressors comprised the 

‘psychological’ component of the psychophysiological interaction; the next regressor 

comprised the ‘physiological’ component; the next two regressors made up the key 

‘interaction’ contrast. The remaining 12 regressors modelled other elements of the task 

(regressors of no interest).

a) DECIDE_WENT_W_STIM: 1 during decision period (i.e. lasting from decision 

onset until response), 0 outside decision period, on trials where stimulus was 

relevant attribute.

b) DECIDE_WENT_W_RESP: 1 during decision period (i.e. lasting from decision 

onset until response), 0 outside decision period, on trials where action was 

relevant attribute.

c) IPS_TIMECOURSE: The mean timeseries (after preprocessing) extracted from 

a region of interest based on analysis from model 1. The mask used is described 

below.

d) IPS_WENT_W_STIM_INTERACTION: Interaction of 

DECIDE_WENT_W_STIM and IPS_TIMECOURSE; following the procedure 

outlined in 33, DECIDE_WENT_W_STIM had zero centre and 

IPS_TIMECOURSE had zero mean.

e) IPS_WENT_W_RESP_INTERACTION: The interaction of 

DECIDE_WENT_W_RESP and IPS_TIMECOURSE; 

DECIDE_WENT_W_RESP had zero centre and IPS_TIMECOURSE had zero 

mean.

The remaining twelve regressors (of no interest) were: RESPONSE_ONSET, 

RESPONSE_RIGHT>LEFT, FEEDBACK_ONSET, FEEDBACK_REWARD, 

DECIDE_NOBRAINER, DECIDE_WENT_W_NEITHER (as regressor (a), but on trials 

where neither the best stimulus nor best action was chosen), and six parametric regressors 

for the values of the best, 2nd best and worst response, and best, 2nd best and worst stimulus, 

all at the decision phase. The key contrast of parameter estimates (main Fig. 6) was 
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therefore: (IPS_WENT_W_STIM_INTERACTION - 

IPS_WENT_W_RESP_INTERACTION). A region significantly greater than zero for this 

contrast was showing greater functional connectivity with IPS on trials where stimulus was 

relevant, whereas a region significantly less than zero for this contrast was showing greater 

functional connectivity with IPS on trials where action was relevant.

Intersubject registration—Registration to high resolution structural images was carried 

out using FLIRT (FMRIB’s Linear Image Registration Tool). Registration from high 

resolution structural to standard space was then further refined using FNIRT nonlinear 

registration.

Second-level general linear model and statistical inference—For both models 1 

and 2, higher-level analysis was carried out using FLAME (FMRIB's Local Analysis of 

Mixed Effects) stage 1. A group mean was fit to contrasts of parameter estimates from the 

first-level analysis, and T-statistics were estimated at each voxel to test whether this mean 

was significantly different from zero. For model 1 (main task GLM), Z (Gaussianised T)-

statistic images were thresholded using clusters determined by Z>2.3 and a (whole-brain 

corrected, family wise error) cluster significance threshold of P=0.05. (This was except for 

prediction error signals at feedback time, where the clusters extent determined by a 

threshold of Z>2.3 were too large to make sensible inference. Hence, a more stringent 

cluster-forming threshold of Z>3.1 was used). For model 2 (PPI GLM), Z (Gaussianised T)-

statistic images were thresholded using clusters determined by Z>2.3 and clusters exceeding 

100 voxels in predefined regions of interest were reported. Clusters formed at this threshold 

were also tested for whole-brain significance using Monte Carlo simulation of a Gaussian 

random field, using the AlphaSim software released as part of AFNI version 1014, using a 

whole-brain significance threshold of p<0.05; the degree of smoothing for this analysis was 

estimated using the FSL tool smoothest v2.1).’

Region of interest analysis—Timeseries for ROI plotting and PPI analyses were 

determined by: (i) thresholding Z-statistic images from the second level analysis reported 

above; (ii) binarising this thresholded image to form a mask; (iii) applying the inverse of 

each individual’s registration, calculated during intersubject registration, to project this mask 

from single-subject space back to the 3mm3 isotropic space in which EPI data were 

acquired; (iv) thresholding (at 0.3) and re-binarising this back-projected mask; (v) extracting 

the mean timeseries within this region of interest from the pre-processed EPI data. We 

adopted a leave-one-out approach to ROI construction31, in which the mask used to extract 

each subject’s data was based upon a group analysis containing all the remaining (n-1) 

subjects, and then tested in the independent left-out subject.

To plot effects of individual regressors through time, the timeseries was upsampled, then 

timelocked to decision onset (Figs. 5b/7b, supplementary Fig. 9) or feedback onset 

(supplementary Fig. 8b, 8d) of each trial. This creates a data matrix with dimensions 

nTrials*nTimepoints. Each timepoint was regressed against explanatory variables of interest 

for each subject. The mean +/− standard error (across subjects) of parameter estimates from 

this regression is plotted. A full description of this approach is given in 54.
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The masks for timeseries analysis and PPIs were determined as follows:

- IPS mask for main Fig. 5b, attribute-based prediction error (supplementary Fig. 8d), 

and PPI analysis: all voxels with Z>2.8 for contrast (i) in GLM 1 that lay within an 

anatomical mask of the parietal cortex.

- Nucleus accumbens/VMPFC mask, feedback phase (supplementary Fig. 8b): all 

voxels with Z>3.1 for contrast (iv) in model 1, described above, that lay within an 

anatomical mask encompassing the nucleus accumbens and VMPFC. A more stringent 

threshold was used for ROI generation than in IPS/dMFC to enable increased 

anatomical specificity; similar results could be obtained irrespective of exact threshold 

used.

- Cingulate/paracingulate cortex mask for main Fig. 7b: all voxels with Z<-2.8 for 

contrast (ii) in GLM 1 that lay within an anatomical mask of the cingulate and 

paracingulate cortices

- Ventromedial prefrontal cortex mask, decision phase (supplementary Fig. 9): an 8mm 

sphere placed at a location consistent with findings from a recent meta-analysis of 

value-related activations37

A supplementary methods checklist is available.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Experimental task design. (a) Outside scanner, subjects learned reward probabilities (pS) 

associated with 8 stimuli, via pairwise choices between stimuli. Subjects trained to reach a 

minimum performance criterion of 90% correct (choosing higher valued stimulus). (b) 

Subjects also learned reward probabilities (pA) associated with 8 actions (finger presses), 

via pairwise choices between actions (dark grey squares indicate currently available actions; 

each action tied to an onscreen spatial location). Subjects trained to same criteria as for 

stimuli. Stimulus and action training was alternated in blocks of at least 70 trials, with an 
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additional 40 trial ‘refresher’ block immediately prior to the fMRI experiment. (c) Inside the 

scanner, subjects performed a three-option choice experiment, in which each option 

comprised one previously learned stimulus and one previously learned action. Subjects were 

instructed to weight stimulus and action information equally on each trial, and select the best 

option to obtain points that subsequently converted into monetary reward (see methods). 

Reward was delivered probabilistically according to pO, the optimal combination of pS and 

pA (see equation 1 in methods), for the chosen option. (d) Two example trials. In trial 1, 

options A and B are of equal (integrated) value. The action attribute favors option A and so 

would be deemed ‘relevant’ if A were chosen, and stimulus deemed ‘irrelevant’. The 

converse would be true if option B were chosen. Were option C chosen, the trial would be 

discarded from fMRI analysis. In trial 2, action would be deemed relevant if A were chosen, 

whereas stimulus would be deemed relevant if C were chosen. (e) Choice behavior. On trials 

where stimulus and action favor different options, the probability of choosing the option 

favored by the stimulus attribute (ordinate) is plotted as a function of the difference in 

probabilities on the two dimensions (abscissa). Bars show mean +/− s.e.m. across 19 

subjects.

Hunt et al. Page 28

Nat Neurosci. Author manuscript; available in PMC 2015 December 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 2. 
Predictions of behavior from hierarchical model. (a)-(c) Distractor effects, described in text 

and elucidated in subject behavior in figure 3(a)-(c). A distractor effect is where option 3 

value affects choice probabilities between options 1 and 2, here assessed via logistic 

regression. The model shows a classic value-based distractor effect (a), but also a within-

attribute distractor effect (b/c), as is found in subject behavior. (d) Reaction time effects in 

model estimated via linear regression, comparable to those revealed in subject behavior in 
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figure 3(e). The model is most heavily influenced by value difference on the relevant 

attribute, not the irrelevant attribute or integrated values.
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Figure 3. 
Subject behavior (n=19 subjects). (a) Value-based distractor effect – high values of option 3 

make options 1 and 2 less discriminable. Datapoints show mean +/− s.e.m. (across subjects) 

of logistic regression parameters for each of the 16 stimuli/actions on the probability of 

choosing option 1 vs option 2 (see methods for details). Trials have been split into those 

where the 3rd option has a high value, and those where it has a low value. Red points show 

effects when option 3 pO is high (in top 33% of values), blue points when option 3 pO is 

low (in bottom 33%). Lines show average best fit to datapoints; the slope of this line is 

significantly different between high pO3 vs low pO3 (T(18)=3.17, p=0.0053 (stimulus 

influence); T(18)=2.45, p=0.025 (action influence)). (b) When option 3 is split selectively on 

the stimulus attribute, the distractor effect remains on the stimulus discriminability of 

options 1 and 2 (T(18)=2.51, p=0.021), but not on the action discriminability (T(18)=0.82, 

p=0.42). (c) When option 3 is split selectively on the action attribute, the distractor effect 

remains on the action attribute (T(18)=3.18, p=0.0052), but not on the stimulus attribute 

(T(18)=1.78, p=0.092). (d) Analysis of trials where evidence given by stimulus and action 

are equal and opposite. Probability of choosing option 1, on trials where pS1>pS2, 

pA2>pA1, and (pS1-pS2)≈(pA2-pA1). On such trials, ‘choosing based on stimulus’ (plotted 
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on ordinate) is equivalent to ‘choosing option 1’. Option 3 is always one of the two 

unchosen options. Bars show mean +/− s.e. (across subjects). *** denotes p=8.5*10−4, 

paired T-test between low and high pR3 (T(18)=−3.99) and p=9.0*10−6, paired T-test 

between low and high pS3 (T(18)=6.11). Interaction in two-way ANOVA, F(1,72) = 16.62, 

p=1.7*10−4. (e) Reaction times are more heavily influenced by the relevant attribute than the 

irrelevant attribute. Bars show mean +/− s.e.m. (across subjects) of effects of value 

difference on subject reaction times, estimated via linear regression (y-axis is flipped – i.e. 

higher value differences typically elicit faster reaction times). *** denotes p=2.13*10−4, 

one-sample T-test (T(18)=4.62); ** denotes p=0.0030, paired T-test (T(18)=3.43)); n.s. = 

non-significant one-sample T-test.
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Figure 4. 
Model predictions of fMRI data, derived from ‘attribute comparison’ node of the 

hierarchical model. Model activity from each trial was convolved with a haemodynamic 

response function, and then regressed against chosen value and best unchosen value on both 

relevant and irrelevant attributes (together with a constant term, and model reaction time 

included as a coregressor of no interest). Bars show mean +/− s.e.m. of parameter estimates 

from the regression across 10 simulations of the model. The contrast (chosen value – best 

unchosen value)irrelevant - (chosen value – best unchosen value)relevant is encoded by the 

model.
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Figure 5. 
Intraparietal sulcus shows features of an attribute comparison signal, with opposing signs for 

relevant and irrelevant attributes. (a) Statistical parametric map of the contrast (chosen value 

– best unchosen value)irrelevant - (chosen value – best unchosen value)relevant, at the time of 

making the decision, thresholded at Z>2.3 uncorrected for display purposes (n=19 subjects). 

A bilateral portion of IPS reflects this contrast, with the left IPS surviving whole-brain 

correction (FWE-corrected p=0.0023, cluster-forming threshold Z>2.3; peak Z=3.65, MNI=

−38,−42,40mm). (b) Timeseries analysis of this region, time-locked to decision phase, 
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reveals negative correlates of (chosen value)irrelevant and positive correlates of (best 

unchosen value)relevant, but positive correlates of (chosen value)relevant and negative 

correlates of (best unchosen value)irrelevant (bars show mean +/− s.e. across subjects). To 

avoid circular analysis, a leave-one-out cross-validation approach was used for timeseries 

extraction (see methods).
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Figure 6. 
Psychophysiological interaction with intraparietal cortex. (a) Functional connectivity with a 

bilateral portion of the anterior/lateral orbitofrontal cortex was greater on trials where 

stimulus was the relevant attribute relative to trials where action was the relevant attribute 

(peak Z = 3.52; MNI = 36,52,−10 mm (right OFC); peak Z = 2.91, MNI = −26,42,−12mm 

(left OFC); all voxels with Z>2.3 shown, both clusters contained >100 voxels at this 

threshold) (n=19 subjects). (b) Functional connectivity with a portion of the left putamen 

was greater on trials where action was the relevant attribute relative to trials where stimulus 
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was the relevant attribute (peak Z = −3.46; MNI = −18,12,2 mm; all voxels with Z>2.3 

shown, the left putamen contained >100 voxels at this threshold, whilst the right putamen 

showed a similar, smaller activation).
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Figure 7. 
Dorsal medial frontal cortex shows an integrated value difference signal, with the same sign 

for both relevant and irrelevant attributes. (a) Statistical parametric map of the contrast 

(chosen value – best unchosen value)relevant + (chosen value – best unchosen value)irrelevant, 

at the time of making the decision, thesholded at Z<−2.3 uncorrected for display purposes. 

A portion of dorsal medial frontal cortex reflects this contrast (FWE-corrected p=0.0054, 

cluster-forming threshold Z<−2.3; peak Z=−3.85, MNI=−2,34,46mm). Other regions 

surviving whole-brain correction are detailed in table S3. (n=19 subjects) (b) Timeseries 
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analysis of this region, time-locked to decision phase, reveals negative correlates of both 

(chosen value)relevant and (chosen value)irrelevant, and positive correlates of (best unchosen 

value)relevant and (best unchosen value)irrelevant (bars show mean +/− s.e. across subjects), 

slightly delayed in time relative to attribute comparison signal in IPS (compare to figure 5b). 

As before, cross-validated ROIs were used for timeseries extraction (see methods).
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