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Heightened impulsivity and cognitive biases are risk factors for gambling problems.
However, little is known about precisely how these factors increase the risks of
gambling-related harm in vulnerable individuals. Here, we modelled the behaviour
of 87 community-recruited regular, but not clinically problematic, gamblers during a
binary-choice reinforcement-learning game, to characterize the relationships between
impulsivity, cognitive biases and the capacity to make optimal action selections and
learn about action-values. Impulsive gamblers showed diminished use of an optimal
(Bayesian-derived) probability estimate when selecting between candidate actions, and
showed slower learning rates and enhanced non-linear probability weighting while
learning action values. Critically, gamblers who believed that it is possible to predict
winning outcomes (as ‘predictive control’) failed to use the game’s reinforcement
history to guide their action selections. Extensive evidence attests to the ease with
which gamblers can erroneously perceive structure in the reinforcement history of
games when there is none. Our findings demonstrate that the generic and specific risk
factors of impulsivity and cognitive biases can interfere with the capacity of some
gamblers to utilize structure when it is available in the reinforcement history of games,
potentially increasing their risks of sustaining gambling-related harms.

Keywords: computational psychiatry; impulsivity; gambling cognitive biases;
predictive control; reinforcement-learning; action-selection

Introduction

Recent research and policy developments have highlighted the need to understand better

the factors that increase the risk of gambling-related harms, broadly conceived of in terms

of excessive expenditure of money and time on gambling and its adverse effects upon

family, social and occupational functioning (Blaszczynski, 2009; Markham, Young, &

Doran, 2014). One challenge is to elucidate the cognitive and emotional processes that

translate these risk factors into actual harms.

Some risk factors for gambling-related harms are generic in that they also appear to

operate in related or co-occurring psychological difficulties. For example, trait impulsivity

tends to be elevated in individuals who gamble frequently or who have problems

controlling their gambling activities (Blaszczynski, Steel, & McConaghy, 1997; Steel &

Blaszczynski, 1998). Impulsivity both complicates treatment delivery and diminishes the

likelihood of good clinical outcomes in pathological gamblers (Adinoff et al., 2007;

Goudriaan, Oosterlaan, De Beurs, & Van Den Brink, 2008). However, this is also the

case in overlapping clinical populations such as those with alcohol or substance-related
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difficulties (Leeman & Potenza, 2012) and certain mood-related illnesses that can present

with or without gambling problems (Di Nicola et al., 2010).

By contrast, other risk factors for gambling problems seem more specific. Cognitive

perspectives emphasize the role of erroneous beliefs and reasoning about gambling

games in sustaining gambling participation and facilitating the development of gambling

problems (Ladouceur, Paquet, & Dube, 1996; Toneatto, 1999). These biases include

mistaken thinking about random outcomes – most famously, in the ‘Hot-Hand’ and

‘Gambler’s Fallacy’ (Ayton & Fischer, 2004; Burns & Corpus, 2004; Croson & Sundali,

2005), but also beliefs that it is possible to predict, or even influence, the chance outcomes

of gambling games (Ladouceur & Sévigny, 2005; Po Oei, Lin, & Raylu, 2008). Here, we

investigated the relationships between the generic risk factor of impulsivity and the

specific risk factors around cognitive biases and the abilities of gamblers to select

between, and learn about, actions and probabilistic rewards. Learning more about

disruptions to these cognitive operations can help us understand why some gamblers

continue to gamble in the face accumulating losses, increasing the likelihood of gambling-

related harm.

Actions-selection refers to the computational challenge of using the best available

information to determine behavioural choices (Frank, 2011). In a gambling context, this

challenge might be met by the adoption of (sometimes) suboptimal strategies of

persisting with previous winning game choices (e.g. positive recency in ‘Hot-Hand’

fallacy) or shifting from losing choices in a sequence (e.g. negative recency in the

‘Gambler’s Fallacy’; Ayton & Fischer, 2004; Burns & Corpus, 2004; Croson &

Sundali, 2005). Evidence attests to peoples’ difficulties with randomness (Tversky &

Kahneman, 1974) and the relative ease with which individuals (including gamblers) can

be induced to perceive structure in the reinforcement history of games when none is

available (Ayton & Fischer, 2004; Croson & Sundali, 2005). We know less about how

effectively gamblers can use structure when it is available to optimize behaviour in

chance games.

To explore this issue, we asked regular gamblers to complete a reinforcement-learning

game in which two actions generated probabilistic outcomes of varying value. At different

times, one action was more likely than the other action to deliver winning outcomes; at

other times, these contingencies reversed (Behrens, Woolrich, Walton, & Rushworth,

2007). Optimal action-selection over successive choices should involve the comparison of

approximate expected values, reflected in both the best cumulative estimate of actions’

probabilities of reward – obtained through a Bayesian updating process – and the

signalled values of the prospective outcomes. We tested whether variability in impulsivity

and cognitive biases is associated with diminished use of these optimal information

sources; but increased reliance upon decisional ‘short-cuts’ such as ‘win-stay’ strategies

expressed in ‘Hot Hand’ phenomena (Ayton & Fischer, 2004).

Reinforcement-learning refers to the acquisition of knowledge about the stimuli or

actions and their reward values (Cohen, 2008). Substantial computational and

neurobiological research has demonstrated that reinforcement learning is mediated by

dopaminergic modulation of cortico-limbic circuits known to show functional

disturbances in samples of pathological gamblers (Glimcher, 2011; Reuter et al., 2005;

Worhunsky, Malison, Rogers, & Potenza, 2014). In a simplified form, reinforcement-

learning is captured by the Rescorla and Wagner (1972) D-rule in which the computed

probability of an action producing a reward is updated on the basis of comparisons

between the previous actual and expected outcomes: piþ1 ¼ pi þa(ri – pi) where p is the

estimated probability and r is the outcome (1, win; 0, no win). Positive differences
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augment the updated piþ1 while negative differences – say, when an expected winning

outcome is not delivered – diminishes piþ1. The parameter a represents the learning rate;

it captures the magnitude of adjustments made to the estimated probabilities, pi þ 1,

following each outcome: larger values of a indicate larger adjustments (and rapid

learning), smaller values indicate gradual adjustments (and slower learning). Trait

impulsivity is associated with changes in D2 receptor expression in mesolimbic structures

that support reinforcement-learning (Buckholtz et al., 2010; Dalley et al., 2007). We tested

whether variability in trait impulsivity and the strength of regular gamblers’ cognitive

biases is associated with smaller or large learning rates, indicating that some gamblers

might learn more quickly or slowly than other gamblers.

We included three further elements in our reinforcement-learning model. Descriptive

accounts of decision-making under conditions of risk, such as Prospect Theory

(Kahneman & Tversky, 1979; Tversky & Kahneman, 1992), describe how the relationship

between nominal value and psychological value (or ‘utility’) often shows a concave

function such that people tend to underweight larger increases in value rewards (as gains)

compared to smaller increases. Similarly, people tend to overweight low probabilities of

rewards in their choices but underweight high probabilities (Tversky & Kahneman, 1992).

However, this probability weighting may be disturbed in pathological gamblers in ways

that promote preferences for risk across the range of probabilities (Ligneul, Sescousse,

Barbalat, Domenech, & Dreher, 2013). Erroneous cognitions about probability are also a

feature of gambling problems in some affected individuals (Toneatto, Blitz-Miller,

Calderwood, Dragonetti, & Tsanos, 1997). Here, we tested whether the subjective

evaluation of gains and probability weighting reflect variability in impulsivity and

gambling-related cognitive biases in regular gamblers, linking risk factors for gambling-

related harms to non-normative decisional processes that might sustain unhealthy

gambling behaviours.

Finally, our reinforcement-learning model allowed the subjective value of gains,

scaled by their probability weighting, to be used by a decisional (‘softmax’) rule

(O’Doherty et al., 2004) to select probabilistically the action with the greater value. The

rule incorporates a final parameter – the ‘inverse temperature’ – that captures the

consistency with which the optimal actions are chosen, allowing us to assess, in an

exploratory manner, the degree to which impulsivity – often conceived as the tendency to

act without forethought (Evenden, 1999; Patton, Stanford, & Barratt, 1995) – and

cognitive biases introduce an element of randomness in action-selection over and above

changes in reward and probability weighting.

Methods

The study was approved by the Central University Research Ethics Committee (CUREC)

of the University of Oxford. All participants gave written informed consent.

Participants

Ninety-two gamblers between 18 and 60 years of age with varying gambling involvement

were recruited from the Oxford community using advertisements placed on a local

website. All participants had gambled at least once in the past year; one gambler reported

four problems and six reported three problems, as measured by the National Opinion

Research Center (NORC) DSM-IV gambling screen (Hodgins, 2004). None reported five

or more problems with their gambling. Five gamblers were removed from the analysis
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because their parameter estimates on the probability-tracking task were greater than 3 SDs

from the sample mean, leaving a final sample of 87 gamblers (see Table 1).

In the previous year, 11 (12.6%) had gambled daily, 40 (46.0%) gambled 1–3 times a

week, 12 (13.8%) gambled 1–3 times a month, and 24 (27.6%) gambled once to a few

times a year. All gamblers were screened using a semi-structured interview to exclude any

current DSM-IV psychological disorders including substance misuse disorders and

pathological gambling (First, Spitzer, Gibbon, & Williams, 2002). The mean number of

past year gambling problems, as measured by the NORC Gambling DSM-IV Screening

instrument (Hodgins, 2004), was low at 0.76 (ranging from 0 to 4). Therefore, our

observations about the impacts of impulsivity and cognitive biases upon action-values

reported below cannot be attributed to the non-specific deleterious effects upon learning,

attention and executive function of severe pathological gambling (Goudriaan, Oosterlaan,

de Beurs, & van den Brink, 2005).

Demographic and psychometric measurements

Demographical information, including age and years of formal education, were collected.

Participants also reported their past year gambling losses (scored 1, no losses; 2, less than

£100; 3, between £100 to £500; 4, more than £500), and past year gambling frequency (1,

once a year or less; 2, few times a year; 3, one to three times a month; 4, one to three times

a week; 5, daily). Participants completed psychometric assessments of affective (Positive

and Negative Affective Scales; Watson, Clark, & Tellegen, 1988) traits and loss-chasing

behaviour (the Chasing Questionnaire; O’Connor & Dickerson, 2003) traits.

Table 1. Demographic and psychometric characteristics of 87 regular (but non-pathological)
participating gamblers.

N (%), Mean (SD) Mean (SD)

Sex (male) 74 (85.10) Chasing questionnaire
Age 32.78 (11.49) Big wins 13.47 (5.92)
Years of education 14.47 (2.92) Big losses 10.38 (5.23)

Near-misses 4.45 (1.85)
Gambling problems Total 28.30 (11.92)
Past year 0.76 (1.01)
Lifetime 1.59 (1.98) Impulsivity

Attentional 12.38 (3.05)
Gambling losses (past year) Motor 22.87 (3.56)
,£100 61 (70.1) Non-planning 23.67 (4.64)
£100 – £500 19 (21.8) Total score 59.26 (9.61)
.£500 6 (6.9)

Gambling-related cognitive biases
Gambling frequency (past year) Gambling expectancies 12.53 (4.82)
Once or a few times 24 (27.6) Illusions of control 7.38 (4.30)
1–3 times a month 12 (13.8) Predictive control 16.87 (6.47)
1–3 times a week 40 (46.0) Perceived inability to stop 8.82 (5.09)
Daily 11 (12.6) Interpretive control/bias 12.11 (5.04)

Total score 57.90 (19.70)
Affect
State positive 33.01 (6.29)
State negative 12.17 (3.70)

Gambling problems – National Opinion Research Centre (NORC) DSM-IV gambling screen; Affect – Positive
and Negative Affective Scales (PANAS); Chasing Questionnaire (CHQ); Impulsivity – Barratt’s Impulsivity
Scale (BIS-11); Gambling-related cognitive biases – Gambling Related Cognitions Scale (GRCS).
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Our gamblers also completed psychometrically validated questionnaires to measure

trait impulsivity and gambling-related cognitive biases (Patton et al., 1995; Raylu & Oei,

2004), before playing a simple binary-choice reinforcement-learning game for small

monetary prizes (Behrens et al., 2007). In this experiment, we focused specifically upon

impulsivity, as measured by the ‘non-planning’ subscale of the Barratt’s Impulsivity Scale

(BIS-11; Patton et al., 1995). Non-planning impulsivity is characterized by a tendency to

orient to the immediate results of actions rather than longer-term consequences.

We reasoned that this expression of impulsivity is the most likely to impact on the way that

gamblers select between, and learn about, actions with uncertain outcomes (Goudriaan

et al., 2008). Our community sample of gamblers reported just slightly lower total BIS-

scores (M ¼ 59.26, SD ¼ 9.61) relative to normative samples of (non-problem) gamblers

described in the literature (e.g., M ¼ 62.14, SD ¼ 10.05; t(144) ¼ 1.74, p ¼ .09,

d ¼ 0.29; Patton et al., 1995), but significantly lower than samples of pathological

gamblers (M ¼ 76.11, SD ¼ 11.72; t(115) ¼ 7.92, p , .0001, d ¼ 1.42; Loxton, Nguyen,

Casey, & Dawe, 2008) and general psychiatric patients (M ¼ 71.37, SD ¼ 12.61; t

(169) ¼ 7.08, p , .001, d ¼ 1.09; Patton et al., 1995).

Finally, cognitive biases were measured using the Gambling-Related Cognitions Scale

(GRCS) (Raylu & Oei, 2004). The GRCS has five subscales to capture: ‘illusions of

control’ – the belief that prayer, lucky objects or rituals can enhance the likelihood of

winning; ‘interpretive biases’ – the belief that past wins are due to personal ability whilst

past losses are due to circumstance; ‘gambling expectancies’ – the belief that pleasure can

be derived from gambling participation; ‘predictive control’ – the belief one has the skill

to forecast wins; and, finally, ‘inability to stop gambling’ – the belief that the desire to

gamble is so strong that one will never be able to stop the habit. In comparative terms, the

GRCS scores of our sample of gamblers (M ¼ 57.90, SD ¼ 19.70) were somewhat higher

than that reported in an Australian general community sample (M ¼ 35.28, SD ¼ 16.81; t

(705) ¼ 11.49, p , .001, d ¼ 0.87); but marginally lower than a sample of problem

gamblers (M ¼ 64.17, SD ¼ 22.31; t(156) ¼ 1.87, p ¼ .06, d ¼ 0.30; Raylu & Oei, 2004).

Analysis of the psychometric data gathered from our sample demonstrated good

internal reliability: all Cronbach’s a . .82; whilst all subscales had at least moderate

internal reliability: Cronbach’s a . .65.

Probability-tracking game

Our probabilistic-learning task took the form of a two-armed bandit reinforcement-

learning game that has previously been used successfully to identify the neural substrates

of optimal estimations of probability while foraging in volatile reinforcement

environments (see Figure 1a; A full description of the task is available elsewhere;

Behrens et al., 2007). Our participants were asked to choose between two actions (‘blue’ or

‘green’) to win ‘points’ prizes that were subsequently cashed out in monetary prizes.

Sometimes, one action was more likely to win prizes than the alternative; at other times,

the game offered a volatile reinforcement environment in which the reinforced and

unreinforced actions swapped unpredictably.

Participants were told that one colour was more likely to be rewarded than the other but

that this might vary over time. The probabilities of reward associated with each colour

were not displayed so participants were required to estimate the likelihood of reward based

on prior outcomes; that is, this was choice under conditions of ‘ambiguity’ (Baron &

Frisch, 1994). The number of points associated with each option was displayed within

each coloured box (varying independently between 0 and 100), but participants were told
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that the probabilities of rewards were linked to the colours of the boxes and not the reward

magnitudes.

If participants selected the rewarded colour, they won the points displayed in the box;

however, if they selected the non-rewarded colour, they did not score any points and points

were not deducted from their game total. A red bar at the bottom of the screen represented

the cumulative sum of winnings over the course of the game. To increase participants’

motivation, £10 was awarded if the red bar at the bottom of the display reached the silver

mark and £15 if it crossed the gold mark. Unknown to the participants, blue was

programmed to produce rewards 75% of the time over the course of the first 120 trials

(stable condition). In subsequent 30–40 trial blocks, the winning colour alternated

between blue and green, with the winning colour now rewarded 80% of the remaining

trials (Behrens et al., 2007).

Statistical analysis

Participant-level analyses. We fitted two models to participants’ choice behaviour. First,

individual decision parameters from the action-selection model were obtained by regressing

(through a simple logistic General Linear Model) the selection of green option onto features

of each choice across the sequence of trials (see below). Second, and separate to this, we

fitted a simple reinforcement-learning model to each participants’ choices. Individual

decision parameters for the reinforcement-learningmodelwere obtained by direct numerical

integration. The action-selection and reinforcement-learning models are described below.

Action-selection model

Participants’ choices (of the arbitrarily chosen option green) were regressed against: (i) a

constant term; (ii) the optimally tracked probability of reward for the colour green

Figure 1. (a) An example of the probability-tracking task sequence. In this instance, the player
chose the green option (indicated by a grey background) and won the 57 points reward allotted to that
option as signalled by the presentation of the correct option in the middle of the display; (b) Mean
and S.E. of Bs for all regressors from the single participant GLMs of 87 regular (but non-
pathological) participating gamblers. Regressors include: (i) a constant term (ii) tracked probability
for the green option on the current choice; (iii) reward magnitude for the green option on the
current choice; (iv–v) wins and the magnitude of the wins on the preceding choice (i.e. ‘win-stay’ or
‘win-stay-large’ strategies); and (vi–vii) loss and the magnitude of the losses on the preceding
choice (i.e. ‘lose-shift’ or ‘lose-shift-large’ strategies).
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(described in detail below); (iii) the value of reward on the green option for the current

choice; (iv) winning on the green option with the preceding choice (coded as 1), winning

on the blue option with the preceding choice (coded as 21) or losing on the previous

choice (coded as 0); (v) the value of the reward on green on the previous choice if chosen

and won (coded positively), the value of the reward on blue on the previous choice if

chosen and won (coded negatively) or losing on the previous trial (coded as 0); (vi) losing

on the green option with the preceding choice (coded as a 1), losing on the blue option with

the preceding choice (coded as a21) or winning on the previous choice (coded as 0); and,

finally, (vii) the value of the reward on the green option on the previous choice if chosen

and lost (coded positively), the value of the reward on blue on the previous choice if

chosen and lost (coded negatively), or losing on the previous choice (coded as 0).

Regressors were demeaned in two stages. To make regressors (iv) orthogonal to (v),

and (vi) orthogonal to (vii), we centred regressors (v) and (vii) separately for each

participant. Then, to reduce between-participant noise, regressors (ii) to (vii) were

subsequently centred again for each participant.

Parameter (ii) is the optimal probability estimate that players would make if they

tracked the fluctuating probability of reward across the game in order to use expected

value to determine their choices. Using the forward (Markovian) model described in

Behrens et al. (2007), we assumed that players following an optimal strategy do not take

into account the whole reinforcement history at every play; rather, they update their

prediction estimates using information from the preceding choice outcome (i.e. as a simple

Bayesian learner). These prediction estimates are made by holding, in mind, the

representations of rewards probability ri, the variance of these reward probabilities vi (i.e.

estimating volatility), and the variance of this volatility k (i.e. estimating local changes in

volatility). In Markovian terms, vi controls the weight that decision outcome i þ 1 has on

ri; whilst k controls the weight that decision outcome i þ 1 has on vi. The changeability of

r and v from choice i to choice i þ 1 are probabilistic and are represented by Beta and

Gaussian distributions respectively. (See Behrens et al. (2007) for the full algebraic

description.) Therefore, in order to estimate the probability distribution at riþ1 from the

joint probability distribution of the 3 parameters riþ1, viþ1 and k, a numerical integration

(marginalising) is done over viþ1 and k. The optimal probability estimate at any point of

the game (i.e. parameter (ii) of our action-selection model above) is then described by the

mean value of the marginal probability distribution at riþ1.

Reinforcement-learning model

We fitted a reinforcement learning model to each participant’s choices. The model contains

four parameters: the learning rate, a; the probability distortion factor, g; the reward

magnitude weighting factor, h; and the softmax inverse ‘temperature’, b. Value for g , 1

result in the typical Prospect Theory curvature with overweighting and underweighting of

low and high probabilities (Tversky & Kahneman, 1992). Values for h , 1 result the

typical flattening of the utility curve, indicative of underweighting of higher magnitudes

(Tversky & Kahneman, 1992). Low values for b mean that even at very small differences

between the option values, the model is highly likely to select the better option.

On each trial, the model updates the estimated probability of the chosen option

according to a simple delta rule (Rescorla & Wagner, 1972):

piþ1 ¼ pi þ a
_

ðri 2 piÞ

International Gambling Studies 7495



where p is the estimated probability, r is the outcome (1, win; 0, no win). Only one

outcome (green or blue) has to be tracked since p(Green) ¼ 1 – p(Blue). From these

estimates of reward probability, the subjectively distorted probabilities w were calculated

as (Lattimore, Baker, & Witte, 1992):

wi ¼ p
g
i =½pgi þ ð12 piÞg�

Objective reward magnitudes were transformed into subjective magnitudes (Tversky

& Kahneman, 1991), v:

vi ¼ x
h
i

where xi is the objective reward magnitude on option i. Subjective expected values were

then calculated as

sEVi ¼ v*i wi

The model’s probability of selecting the option chosen by the subject on any given trial

was then given by a softmax rule (O’Doherty et al., 2004):

PðC ¼ cÞ ¼ 1

ð1þ exp ð2d *ðsEVc 2 sEVuÞÞÞ
where c and u denote the chosen and un-chosen option, respectively.

The parameters that provided the best fit of each participants’ behaviour were

estimated using a custom-implemented procedure in MATLAB. The parameter space was

set up as a 3-dimensional grid in log space with 30 points in each dimension. The joint

posterior distribution of the unknown model parameters was specified as the product of

choice probabilities over trials under each possible parameter combination in the grid.

The marginal posterior distributions on each parameter were obtained by marginalizing

(numerical integration) over the three dimensions of the grid. Optimal parameters were

then taken as the distribution means of those marginal posterior distributions. (Note:

comparison of a simple action-selection model assuming only an optimal Bayesian learner

and one free parameter for inverse temperature provided a poorer fit to the sample data

than an alternative reinforcement-learning model with four free parameters for [i] learning

rate; [ii] magnitude distortion; [iii] probability distortion; and [iv] inverse temperature

[see Table S3; BIC ¼ 293.64 vs BIC ¼ 324.23), t(86) ¼ 5.91, p , .001, r ¼ .71.])

Group-level analyses. One-sample t-tests were performed on the obtained regression

coefficients (Bs) from the single participant action selection GLMs to determine the

significance of regression slopes across the population. These actions-selection parameters

were entered into a Multivariate Analysis of Covariance (MANOVA) as dependent

variables (DV), with participants’ individual scores from the psychometric assessment as

independent variables (IV), and controlling for differences in demography (i.e. age, sex

and years of education), gambling (i.e. past year gambling problems and the tendency to

‘chase’ winning outcomes, losing outcomes or near-misses), and affect (i.e. positive state

affect). We included the latter covariates to show that any relationships between model

parameters and psychometric scores were not confounded by gross differences in

demographics, gambling severity or affect. Follow-up univariate Analyses of Covariance

(ANCOVAs) were performed to explore their associations between each of the action-

selection parameters against the significant predictors from the above MANCOVA.
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These included scores for the ‘non-planning’ impulsivity sub-scale of the BIS-11 (Patton

et al., 1995) and scores for the ‘predictive control’ sub-scale of the GRCS (Raylu & Oei,

2004); these being the psychometric subscale scores that showed consistent relationships

with model parameters across the sample.

Next, reinforcement-learning decision parameters were normalized by a (natural) log

transformation and entered into a MANCOVA as response variables with non-planning

impulsivity and GRCS scores as predictor variables. Again, individual differences in

demography, gambling and affect were added as covariates. Follow-up univariate

ANCOVAs were performed on the significant predictors from the above MANCOVA to

explore their association with each of the reinforcement-learning decision parameters.

Results

Action-selection model

In order to model how gamblers selected between actions associated with uncertain

outcomes, we fitted an action-selection model to each gambler’s choices (see Methods and

Supplementary Materials for full details). At the single participant-level, each gambler’s

choice (of the colour ‘green’) was regressed against: (i) the optimally estimated probability

of that option (as modelled by an ideal Bayesian learner [Behrens et al., 2007]); (ii) the

magnitude of reward associated with that option; (iii–iv) the winning or winning magnitude

of the preceding choice (i.e. ‘win-stay’ or ‘win-stay-large’ strategies); and (v–vi) the losing

or losing magnitude on the preceding choice (i.e. ‘lose-shift’ or ‘lose-shift-large’ strategies).

Consistent with a previous report using this probabilistic-learning task in a student

sample (Behrens et al., 2007), our gamblers used both the optimally tracked probabilities

of reward, (t(86) ¼ 9.23, p , .001, d ¼ 0.99), and their magnitudes when deciding

between actions, (t(86) ¼ 12.23, p , .001, d ¼ 1.31; see Figure 1b and Table S1).

In addition, however, our gamblers tended to persist with a selection if it had been

successful on the preceding choice, instantiating enhanced ‘win-stay’ behaviour;

t(86) ¼ 11.88, p , .001, d ¼ 1.27), except when the prize won was large (instantiating

diminished ‘win-stay-large’ behaviour; t(86) ¼ 24.40, p , .001, d ¼ 0.47). Gamblers

also tended to stick with a selection if it had been unsuccessful on the preceding

choice (illustrating decreased ‘lose-shift’ behaviour; t(86) ¼ 2.33, p , .05, d ¼ 0.25),

but tended to switch responses if the loss was large (illustrating ‘lose-shift-large’

behaviour; t(86) ¼ 21.78, p ¼ .08, d ¼ 0.19).

At the group level, we found that higher levels of impulsivity (b ¼ 2 .34, p , .01) and

stronger gambling-related cognitive biases (b ¼ 2 .35, p , .01) both tended to go along

with lower final scores on the game, suggesting that these features hampered effective

action-selection (see Table S2). Additionally, gamblers’ impulsivity scores (V ¼ 0.19,

F(6, 73) ¼ 2.93, p ¼ .01, h 2 ¼ .19), their gambling-related cognitive biases (V ¼ 0.15,

F(6, 73) ¼ 2.29, p , .05, h 2 ¼ .16), and their age (V ¼ 0.27, F(6, 73) ¼ 4.52, p , .001,

h 2 ¼ .27) were all significant predictors of how much gamblers used different action-

selection parameters. Impulsive gamblers (F(1,78) ¼ 14.73, p , .001, h 2 ¼ .16; see

Figure 2a), as well as older gamblers (F(1,78) ¼ 8.66, p , .01, h 2 ¼ .10), exhibited

diminished use of the optimal (Bayesian) probability estimates when selecting actions.

Rather, impulsive gamblers tended to persist with the same choices that had delivered

larger rewards on preceding choices (i.e. increased ‘win-stay-large’ behaviour;

F(1,78) ¼ 3.02, p ¼ .09, h 2 ¼ .04).

Gambling-related cognitive biases also appear to impede the use of optimal probability

estimates in action-selection. Gamblers who reported strong cognitive distortions about
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gambling exhibited diminished use of optimal probability estimates when deciding

between the two response options in our game (F(1,78) ¼ 4.80, p , .05, h 2 ¼ .06).

Instead, gamblers with stronger cognitive biases tended to shift from options that they

previously won (decreased ‘win-stay’ behaviour; F(1,78) ¼ 3.93, p ¼ .05, h 2 ¼ .05), and

a tendency to shift from options that they previously lost (increased ‘lose-shift’ behaviour;

F(1,78) ¼ 6.67, p , .05, h 2 ¼ .08).

Further analysis, regressing the optimal probability estimates against the predictive

control subscale of the GRCS (as the belief that it is possible, within the context of

commercial gambling games, to identify winning opportunities; Raylu & Oei, 2004),

indicated the failure to use the optimal (Bayesian) tracked probability of reward when

making choices was particularly clear in those gamblers who endorsed cognitions

associated with ‘predictive control’ (b ¼ 2 .21, p , .05; see Figure 2b and Table 2).

Reinforcement-learning model

At the participant-level, our second model included four parameters: (i) the learning rate to

indicate how much each outcome was used to update the estimated reward probabilities

Figure 2. (a) Individual Bs indicating the use of the optimal (Bayesian) probability estimate in
making choices as a function of non-planning impulsivity score from the Barratt’s Impulsivity Scale
(BIS-11); (b) Individual Bs indicating the use of the optimal (Bayesian) probability estimate in
making choices as a function of predictive control cognitions on the Gambling-related cognitions
scale (GRCS) alongside items on the predictive control subscale displayed on the right of the figure.

Table 2. Group-level regression of Bs from the single participant GLMs (for optimal probability-
tracking) against demographic and psychometric scores in 87 regular (but non-pathological)
participating gamblers.

B SE B b

Constant 13.56 4.05
Education 0.30 0.13 .22*
Age 20.10 0.03 2 .29**
Sex 0.82 1.01 .08
Past year gambling problems 20.13 0.38 2 .03
Total score/CHQ 0.05 0.03 .16
State positive affect/PANAS 20.08 0.06 2 .17
Predictive control/GRCS 20.13 0.06 2 .21*
Non-planned impulsivity/BIS-11 20.34 0.09 2 .41***

Note: R 2 ¼ .62 (p , .001); Covariates shaded in grey; *p , .05; **p , .01; ***p , .001 CHQ – Chasing
Questionnaire; PANAS – Positive and Negative Affective Scales; GRCS – Gambling-related cognitions scale;
BIS-11 – Barratt’s Impulsivity Scale.
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(i.e. the rapidity of adjusting action values); (ii) the subjective distortion of probabilities to

demonstrate overweighting and underweighting of low and high probabilities (Tversky &

Kahneman, 1992); (iii) the underweighting of increasing magnitudes to describe a concave

utility curve (Tversky & Kahneman, 1992); and (iv) the consistency vs randomness (i.e.

stochasticity) of gamblers’ choices as quantified by the ‘softmax’ inverse ‘temperature’

(see Supplementary Materials for full details; O’Doherty et al., 2004).

Entering the parameters of the reinforcement learning model into an MANCOVA

revealed significant effects of impulsivity (V ¼ 0.14, F(4,75) ¼ 3.09, p , .05, h 2 ¼ .14),

but not cognitive biases (V ¼ 0.04, F(4,75) ¼ 0.82, p . .05). Gamblers who reported

heightened non-planning impulsivity exhibited smaller learning rates compared to

gamblers with lowered impulsivity (F(1,78) ¼ 4.15, p , .05, h 2 ¼ .05; see Figure 3a).

They also tended to overweight low probable outcomes and underweight high probable

outcomes (F(1,78) ¼ 4.87, p , .05, h 2 ¼ .06; see Figure 3b). Conversely, high impulsive

gamblers did not under- or overweight larger value outcomes compared to low impulsive

gamblers (see Figures S1A and S1B); neither was there was any indication that impulsivity

was associated with enhanced randomness in our gamblers’ choices across the probability-

tracking game (see Figures S2A and S2B). Finally, in contrast to the clear associations

between impulsivity and model parameters, there was no consistent evidence that

gambling-related cognitive biases were associated with gamblers’ learning rates,

probability or reward magnitude weighting, or consistency or randomness of participants’

choices (Figures S1C and S2C).

Discussion

These data illustrate that one generic risk factor for gambling-related harm – namely,

heightened (non-planning) impulsivity – and one specific risk factor – namely, predictive

control – are associated with disruptions to action-selection and action-value learning

mechanisms in a sample of regular gamblers. Extensive evidence attests to the ease with

which regular gamblers can mistakenly perceive structure in the reinforcement history

of games when there is none (Burns & Corpus, 2004; Croson & Sundali, 2005). These

findings demonstrate that regular gamblers can find it difficult to use reinforcement

Figure 3. (a) Learning rates (natural log) as a function of non-planning impulsivity score on the
Barratt’s Impulsivity Scale (BIS-11); (b) Probability distortions as indicated by overweighting
and underweighting of low and high probabilities in participants with low and high non-planning
impulsive participants (< þ /2 1 S.D.).
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structures to optimize their action selections or learn accurate action-value relationships in

chance-based games.

The present effects were observed in a relatively large sample of gamblers who did not

evidence consistent gambling-related harms or satisfy the diagnostic criteria for DSM-IV

(or V) problem or pathological gambling. The absence of problem gamblers from our

sample means that our findings cannot plausibly be attributed to the non-specific effects of

gambling problems on risky decision-making per se (Goudriaan et al., 2005). Rather, our

findings reflect the way that variability in generic and specific risk factors for gambling

problems – specifically, heightened impulsivity and potent cognitive biases – operate to

impair action-selection mechanisms and the acquisition of action-value associations.

Previous accounts of the way that impulsivity heightens the risk of addictive

behaviours emphasize the tendency to act without forward planning as an expression of

‘loss of control’ over reward-seeking behaviours including heavy and broadened gambling

participation, higher rates of co-morbid alcohol and substance misuse (Petry, 2001, 2001)

and poorer clinical outcomes. Such accounts are essentially descriptive, without any

characterization of the mechanisms that mediate the link between impulsivity and

gambling behaviours. Our data add to this picture by demonstrating that non-planning

impulsivity in gamblers can be associated with diminished use of probability estimates

that could be combined optimally with reward magnitudes to specify action (expected)

values when selecting between candidate actions. This diminution in the use of probability

estimates is accompanied by the use of ‘short-cut’ strategies such as persisting with action

options that have produced large rewards previously (‘win-stay-large’), possibly reflecting

‘Hot-Hand’ behaviour (Ayton & Fischer, 2004; Burns & Corpus, 2004; Croson & Sundali,

2005). Finally, the additional finding that impulsive gamblers made smaller adjustments to

action-values on the basis of their preceding outcomes (i.e. showed smaller learning rates)

suggests that they are also vulnerable to believing that, or at least behaving as if, the

reward structures of chance-based games are more stable than they really are, possibly

prolonging unhealthy gambling behaviours.

This interpretation complements the results of an earlier report that non-planning

impulsivity (also scored with Barratt Impulsivity Scale [BIS-11]; Patton et al., 1995) is

associated with increased uncertainty about the reinforcement structures available in a

suite of slot machines (Paliwal, Petzschner, Schmitz, Tittgemeyer, & Stephan, 2014).

In this experiment, Paliwal et al. (2014) used Bayesian modelling to capture disrupted

belief-updating as individuals completed a series of slot-machine games. Non-planning

impulsivity was linked to increased uncertainty in the estimation of winning probabilities

and game volatility, generating noisy (i.e. more random) choices. Other data have also

linked heightened impulsivity with decision-related uncertainty (Averbeck et al., 2013).

These observations and our own highlight the possibility that individuals with heightened

non-planning impulsivity are not able to access, or choose not to access, updated

probability estimates to help select optimal actions. On the other hand, unlike Paliwal et al.

(2014), we found no evidence that non-planning impulsivity increased the noise in our

participants’ choices. Rather, impulsivity was associated with increased win-stay

behaviour following large winning outcomes suggesting that, in the face of uncertainty,

impulsive gamblers default to heuristic strategies.

Our data also demonstrate enhanced probability weighting action-value learning in

regular gamblers in the finding that impulsive gamblers further overweight low probable

outcomes and underweight high probable outcomes as specified by descriptive accounts

of choice under conditions of uncertainty; specifically ‘Prospect Theory’ (Kahneman &

Tversky, 2000). This exaggerated bias might facilitate the adoption of more risky betting
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strategies through the tendency to overestimate the chances of winning outcomes but

underestimate the greater likelihood of losing outcomes; and may be linked to recent

evidence that pathological gambling is associated with altered neural representations of

discounted probability within meisolimbic circuits (Miedl, Peters, & Buchel, 2012).

Recently, Ligneul et al. (2013) measured the probability weighting of a sample of

pathological gamblers compared to samples of healthy and non-gambling controls.

In contrast to our findings of enhanced overweighting of low probabilities and

underweighting of high probabilities in regular but non-problematic gamblers, these

authors found a general shift towards greater risk in pathological gamblers. Possibly, their

data and ours indicate that transitions from moderate risk of gambling-related harm

(as seen in our sample) towards severe risk (as seen in individuals with a diagnosis

pathological gambling) involve shifts from enhanced under- and over-weighting of low

and high probabilities into global preferences for risk with increasing severity.

The relationships between non-planning impulsivity on the one hand and diminished use

ofoptimal probability estimates, low learning rates and enhancedprobabilityweightingon the

other hand shows some psychological specificity. There was no indication that heightened

impulsivity in our sample of regular gamblers was associated with changes in the use of

rewardmagnitude itself as specified in the action-selectionmodel or in the underweighting of

rewardmagnitudes in terms of their utilities (Kahneman&Tversky, 2000) as specified in our

reinforcement-learning model. Lorains et al. (2014) have reported that underweighting of

reward magnitude, and consistency of choice (‘inverse temperature’), are disturbed in

individualswith diagnoses ofDSM-IVpathological gambling (Lorains et al., 2014),while the

signalling of subjective value of delayed rewards within mesolimbic reinforcement circuits

may also be distorted under at least some conditions (Miedl, Buchel, & Peters, 2014).

Collectively, these data and our own suggest that some changes in action-value learning (e.g.

discounting of reward magnitude/utilities and consistency of choice) emerge with increasing

severity of gambling-related harm or gambling problems.

Complementing the impact of impulsivity upon the acquisition of action values, our

data also indicate that gambling-related cognitive biases interfere with the use of estimated

reward probabilities in action selection. Rather, cognitive biases promote the suboptimal

strategy of placing more weight upon immediately preceding winning and losing

outcomes to make further gambling decisions (i.e. decreased ‘win-stay’ and increased

‘lose-shift’ behaviours). In particular, we found that gamblers who endorsed items

indicative of predictive control showed the lowest use of optimal probability estimates

when selecting between actions. These items include statements such as ‘A series of losses

will provide me with a learning experience that will help me win later’, ‘Losses when

gambling are bound to be followed by a series of wins’ and ‘There are times that I feel

lucky and thus, gamble those times only’, reflecting the conviction that, in the context

of commercial gambling games, it is somehow possible to identify opportunities when

winning outcomes are more or less likely. Our findings demonstrate that precisely those

gamblers with the strongest predictive control biases tend not to use the reinforcement

histories to estimate (reasonably) reward probabilities. Such prior beliefs mean that

gamblers with convictions of predictive control ‘think they know best’ and are unable to

select between actions on the basis of their estimated expected value, potentially

disrupting their ability to learn the value of gambling games (Turner, 2011).

There are at least some implications of our findings for treatment development.

Impulsiveness can sometimes predict relapse in samples of treated pathological gamblers

(Adinoff et al., 2007; Álvarez-moya et al., 2011; Ramos-Grille, Gomà-i-freixanet, Aragay,

Valero, & Vallès, 2015). By contrast, shallow probability, though not delay, discounting is
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associated with reduced gambling participation during the delivery of psychosocial

treatments and then increased likelihood of abstinence at one-year follow-up (Petry,

2012). Our data highlight one mechanism for these relationships; namely, that heightened

impulsiveness and, possibly, strengthened cognitive biases complicate treatment efficacy

by blocking new learning about the reward contingencies of gambling games (Toneatto

et al., 1997).

Finally,we acknowledge that our experiment has several limitations. First, our experiment

was subject to one important limitation; it did not examine the effects of impulsivity and

gambling-related cognitivebiases in individualswith diagnoses ofDSM-IVproblemgambling

or DSM-V disordered gambling, making it unclear whether our findings extend to individuals

who have experienced severe or prolonged gambling harm. Similarly, our sample included a

number of individuals who gambled only a few times a year, highlighting the relevance of our

findings to those with limited to regular gambling participation.

Second, our sample size was relatively small, highlighting the need for follow-up

experiments to replicate our findings. Third, the patterns of gambling activities reported by

our participants were relatively broad, raising the possibility that action-selection and

action-value learning differs amongst gamblers with focused involvement in ‘strategic’

gambling forms; for example, sports betting and poker (Lorains et al., 2014).

Notwithstanding these limitations, our data link the generic risk factor of impulsivity

and the specific risk factor of predictive control to changes in action-selection and action-

value learning. As such, these findings warrant further investigation as putative cognitive

mechanisms that undermine the ability of vulnerable individuals to use the reward

structure in gambling games to regulate participation and limit potential harm.
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