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There is widespread consensus that distributed circuits across prefrontal and anterior 

cingulate cortex (PFC/ACC) are critical for reward-based decision making. The circuit 

specialisations of these areas in primates were likely shaped by their foraging niche, in 

which decision making is typically sequential, attention-guided and temporally extended. 

Here, I argue that in humans and other primates, PFC/ACC circuits are functionally 

specialised in two ways. First, microcircuits found across PFC/ACC are highly recurrent in 

nature and have synaptic properties that support persistent activity across temporally 

extended cognitive tasks. These properties provide the basis of a computational account of 

time-varying neural activity within PFC/ACC as a decision is being made. Second, the 

macrocircuit connections (to other brain areas) differs between distinct PFC/ACC 

cytoarchitectonic subregions. This variation in macrocircuit connections explains why 

PFC/ACC subregions make unique contributions to reward-based decision tasks, and how 

these contributions are shaped by attention. They predict dissociable neural 

representations to emerge in orbitofrontal, anterior cingulate and dorsolateral prefrontal 

cortex during sequential attention-guided choice, as recently confirmed in 

neurophysiological recordings.  

  



When collecting food from trees, early primates were unusual in that they moved 

dextrously between fine arboreal branches, reaching precisely for berries and insects. Their 

forward-facing eyes, with large binocular fields of view, supported these behaviours by 

facilitating depth perception and a visual-centred frame of reference for reaching 

movements. The subsequent development of a fovea in anthropoid primates facilitated rapid 

identification of high value fruits within the cluttered visual environment of the fine-branch 

niche. It is within this ecological niche that the circuitry of the granular prefrontal cortex – 

which supports sequential, temporally extended, and attention-guided behaviour – evolved 

(Wise, 2008; Passingham & Wise, 2012).  

Such foraging behaviours seem quite different from the kind of decisions that we 

humans typically make on a daily basis (for example, on a trip to the supermarket). Yet several 

features are in fact similar (Hayden, 2018). Most decisions that we make are sequential in 

nature (Cisek, 2012): unlike in many lab experiments used to study decision making, it is rare 

for humans to be suddenly confronted with two alternatives appearing next to one another. 

Most decisions are temporally extended: even in situations where options are presented 

simultaneously, reaction times depend upon the difficulty of the decision, and this implies a 

process of internal evidence accumulation across time (Shadlen & Shohamy, 2016). And, 

perhaps most significantly in primates, most decisions are attention-guided: there is a close 

interplay between where humans shift their foveal gaze by saccading around the 

environment and the unfolding of a decision process (Krajbich, 2019). 

 The sequential, temporally extended and attention-guided properties of reward-

based decision making immediately give rise to questions about how the neural circuitry of 

the prefrontal (PFC) and anterior cingulate cortex (ACC) is specialised to support these 

different processes. If we are to answer these questions, it makes sense to study them in 



primates. As we shall see, there is functional specialisation in the cellular microcircuits of the 

primate PFC/ACC, a specialisation that is far less pronounced in rodents (Gilman et al., 2017). 

Anatomical homologies can also readily be drawn between ACC and PFC subregions in 

macaque monkeys and corresponding subregions of the human brain, but this is more 

challenging in other mammalian species (Ongur & Price, 2000; Ongur et al., 2003; Neubert et 

al., 2015). The primate PFC is also unique in having areas with a granular cytoarchitecture 

with an expanded layer IV (Passingham & Wise, 2012), whereas the rodent brain lacks a 

granular PFC and as a consequence the homologies between rodent and primate PFC remain 

strongly debated (Laubach et al., 2018) (figure 1). During primate evolution, 

cytoarchitectonically new areas emerged in anthropoid primates (such as macaques, 

marmosets, apes and humans) that do not exist even in strepsirrhine primates (such as 

lemurs, lorises and galagos) (Preuss & Goldman-Rakic, 1991), let alone in other mammals.  

And in addition to these anatomical homologies, primate cognition is also unique. For 

example, primates can flexibly combine individual cues across extended periods of time to 

construct goal-directed behaviour (Passingham & Wise, 2012). This is perhaps because the 

primate way of foraging relies heavily upon visual attention; anthropoid primates typically 

gather information about the environment with their eyes and then select or reject different 

food items that they encounter in accordance with their current needs (Coe, 1984). Thus, eye 

gaze provides a unique window into cognition as a decision is unfolding. While certain 

observable behaviours in rodents can also be used as indicators of deliberative processing 

(Redish, 2016), these do not provide such direct insight into what is currently the focus of 

attention in a manner analogous to human decision making.  

In this review, I examine how the neural circuitry of the primate prefrontal cortex is 

functionally specialised to support temporally extended, attention-guided behaviours such as  



 

Figure 1. Comparison of surface anatomy and antomical subregions in human, macaque and rat frontal cortex. (a) Medial 
(top) and orbital (bottom) views of the human frontal cortex. (b) Medial (top) and orbital (bottom) views of the macaque 
frontal cortex. (c) Medial (top) and lateral (bottom) views of the rat frontal cortex. Many of the areas found in the human 
frontal cortex, in particular granular prefrontal cortex, have homologues in the macaque brain but are absent in the rat brain, 
which lacks a granular prefrontal cortex. Note that in this review, I refer separately to prefrontal cortex (PFC) from anterior 
cingulate cortex (ACC) based on the convention that the PFC denotes the granular parts of the frontal lobe, whereas ACC is 
agranular. When I refer to orbitofrontal cortex (OFC), I am primarily referring to recordings made in granular area 13m of the 
macaque; however, as can be seen in (b), more posterior parts of the macaque OFC are agranular, and in rodents OFC in 
entirely agranular. Figure reproduced from (Passingham & Wise, 2012) with permission of Oxford Publishing Limited through 
PLSclear, Copyright 2012 Oxford University Press. 

decision making. I use this to contextualise recent work that I have performed, studying the 

neural correlates of decision making in temporally extended decision tasks. I begin by 

reviewing how primate PFC and ACC are functionally specialised at the level of their 

microcircuitry – the local connections within the cortical circuit – to perform temporally 

extended computations in recurrent circuits. I argue that these specialisations are found 

broadly across PFC/ACC as a whole, and can explain the temporal dynamics of decision-

related signals that I and others have observed in several different PFC subregions. I then 
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describe how functional specialisation at the level of macrocircuitry – the anatomical 

connections of different PFC/ACC subregions to other brain areas – enables these subregions 

to make distinct contributions to sequential, attention-guided decision making. I describe 

findings from my recent work that demonstrates these functionally distinct contributions, and 

link this to frameworks proposing that even simple economic choices can be described as a 

temporally extended process of evidence accumulation guided by visual attention. 

 

The PFC Microcircuit is Functionally Specialised for Temporally Extended Information 

Processing 

 Several features distinguish the microcircuit properties of the primate PFC/ACC from 

other parts of the neocortex (figure 2).  

Firstly, the local connectivity of PFC and ACC pyramidal neurons is highly recurrent in 

nature. Across the neocortex of anthropoid primates, there is a gradient in neuronal density 

(figure 2a) such that neurons in early sensory areas are more densely packed, whereas 

neurons in frontal cortex are more sparsely distributed (Collins et al., 2010). Frontal cortex is 

therefore marked by a greater amount of neuropil between neuronal cell bodies, which is a 

difference that becomes most extreme in the most anterior regions of human PFC 

(Semendeferi et al., 2010). This increase in neuropil reflects each individual neuron having a 

far greater number of dendrites, dendritic spines and terminals in PFC than in other regions, 

shown in studies that directly compare the morphology of layer III pyramidal neurons 

between primate PFC and those of other brain areas and species (Elston et al., 2001; Elston, 

2007; Gilman et al., 2017). In particular, the hierarchical position of a cortical area 

(determined by its anatomical connections to other areas) correlates strongly with the  

  



 

Figure 2. Microcircuit properties vary across the cortical hierarchy, with PFC/ACC subregions at one end of the hierarchy. 
(a) A flat map of macaque cortex (with occipital areas on the left of the figure and frontal areas on the right) in which the 
shading of each area reflects the neuronal density in that tissue. Neuronal density was estimated using the isotropic 
fractionator method; red lines indicate locations of cuts made in the tissue before estimating neuronal density. Whereas V1 
is the most neuron dense region, most of frontal cortex has a low neuronal density. Taken from (Collins et al., 2010). (b) Layer 
III pyramidal neuron spine count varies across the cortex, and correlates with a region’s position in the anatomical hierarchy. 
V1 has the least spinous neurons, whereas PFC and ACC regions (e.g. 46, 10, 24) are among the regions with the most spinous 
neurons and hence the most recurrent circuitry. Note that this ‘hierarchy’ is defined in terms of anatomical connections 
(Markov et al., 2014) rather than in terms of receptive field properties or a temporal sequence of activations (for instance, 
regions high in the anatomical hierarchy can still have relevant or predictive activity even before stimulus onset (Durschmid 
et al., 2019)). Adapted from (Chaudhuri et al., 2015). (c) Top row: variation in MR-derived T1w/T2w ratio (used as a proxy for 
myelination (Glasser & Van Essen, 2011)) across the cortex, showing frontal cortex to have lower myelin density than other 
areas. Bottom row: this map was then correlated with transcriptomic data measuring gene expression of a wide range of 
neuron-related genes; it is found that regions with a low T1w/T2w ratio, such as frontal cortex, have higher expression of the 
long-time constant NR2B subunit of the NMDA receptor (left); there is similar across-brain variation in other NMDAR subunits 
(right) and many other neuronal genes. Adapted from. (d) The physiological consequence of these anatomical and 
ultrastructual features: PFC and ACC regions (such as 24c, 9/46, and area 10) have the longest decay time constant of their 
resting autocorrelation function, meaning that their activity is more persistent over time. Panel (a) Copyright 2010 National 
Academy of Sciences. Panels (b) and (d) reprinted from Neuron, vol. 8, (Chaudhuri et al., 2015), “A Large-Scale Circuit 
Mechanism for Hierarchical Dynamical Processing in the Primate Cortex”, pp.419-431, Copyright 2015, with permission from 
Elsevier. Panel (c) Reprinted by permission from Springer Nature: Nature Neuroscience, “Hierarchy of transcriptomic 
specialization across human cortex captured by structural neuroimaging topography.” (Burt et al., 2018), Copyright 2018. 

dendritic spine count of layer III pyramidal neurons in that area (Chaudhuri et al., 2015) (figure 

2b).  
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As a result, the average layer III pyramidal neuron in primate PFC/ACC receives ~5-10 

times the number of excitatory synaptic inputs compared to an equivalent neuron in primary  

visual cortex. Because these connections are primarily local corticocortical projections from 

other nearby neurons, this means that PFC/ACC connectivity is highly recurrent. This increase 

of recurrent excitatory connections within a circuit can change its response properties in a 

highly non-linear fashion, causing persistent activity to emerge as a stable state of the 

network (Wang, 2020). This ability to stably maintain activity across time is a prerequisite for 

temporally extended information processing during cognitive tasks.  

In addition to this recurrent local circuitry, PFC and ACC also differ from other areas in 

terms of their expression of receptor subunits that determine the electrochemical properties 

of neurotransmitter receptors in the dendritic membrane. This again determines how neural 

activity can persist across time within these regions. For example, NMDA receptors for the 

neurotransmitter glutamate are found across cortex and have slow excitatory post-synaptic 

currents; the subunit composition of the NMDA receptor determines the time course of these 

slow currents. In PFC/ACC, there is greater expression of the GRIN2B gene encoding the NR2B 

subunit, and reduced expression of GRIN2A encoding the NR2A subunit (Burt et al., 2018) 

(figure 2c). The resulting subunit composition leads to a longer synaptic NMDA receptor decay 

time-constant when compared to other areas (Cull-Candy et al., 2001), as confirmed in patch 

clamp recordings from medial frontal cortex versus visual cortex (Wang et al., 2008). 

Theoretical work has demonstrated the importance of this long time-constant NMDA 

receptor for supporting persistent activity within the network (Wang, 1999; Wong & Wang, 

2006). This has also been confirmed empirically, as selective pharmacological antagonism of 

NR2B-containing NMDA receptors abolishes persistent activity in dorsolateral PFC during 

working memory (Wang et al., 2013), and more recently systemic antagonism of NMDA 



receptors has been shown to affect evidence integration in temporally extended decision 

making tasks (Cavanagh et al., 2020b; Salvador et al., 2020).    

Beyond gradients in NMDA receptors and recurrent excitation, gradients in expression 

of other neurotransmitter receptors (Burt et al., 2018), inhibitory cell subtypes (Kim et al., 

2017; Burt et al., 2018) and long-range cortico-cortical projections (Goulas et al., 2018) will 

further affect the circuit properties of PFC relative to other regions. It would be conceivable 

that these factors might vary independently to one another across different cortical areas, 

meaning that this variation would be high dimensional. However, transcriptomic studies have 

in fact shown that a single principal component accounts for nearly 30% of the between-area 

variance in expression of brain-specific genes, there is a single, dominant axis of variation in 

circuit properties across the brain (Burt et al., 2018). PFC and ACC sit at one end of this 

dominant axis, placing them at the top of an overall gradient of excitation and inhibition 

across the entire cortex (Wang, 2020). Although the rodent brain is far less differentiated than 

the primate (Gilman et al., 2017), a similar set of conclusions can nevertheless be drawn for 

the mouse (Fulcher et al., 2019).  

 What are the physiological consequences of these microcircuit properties? To 

measure the persistence of neural activity directly, one can examine the firing rates of 

neurons recorded while monkeys are at rest, and compare the  temporal autocorrelation 

structure of single units recorded from different cortical areas (Murray et al., 2014). The decay 

time constant of the autocorrelation function is found to be longest in frontal regions, and 

shortest in early sensory regions (figure 2d), implying that activity is most persistent across 

time in PFC and ACC. The average resting time constant of each cortical area corresponds 

closely to its position in the anatomical hierarchy and the number of recurrent excitatory 

connections in that area (Chaudhuri et al., 2015). More recently, similar organising principles 



of resting time constants have also been found in the rodent (Siegle et al., 2021) and human 

brain (Vidaurre et al., 2018; Demirtaş et al., 2019; Gao et al., 2020). Several studies have also 

shown that neurons with longer resting time constants are more likely to be functionally 

involved in temporally extended cognitive tasks (Nishida et al., 2014; Cavanagh et al., 2016; 

Cavanagh et al., 2018; Wasmuht et al., 2018; Fascianelli et al., 2019; Cavanagh et al., 2020a). 

 It is therefore unsurprising that in order to successfully model the response properties 

of neurons recorded during temporally extended tasks, computational models of PFC circuits 

rely heavily upon recurrent local connections. These endow such networks with the ability to 

perform temporally extended operations such as working memory, evidence integration and 

motor sequence production (Wang, 2001; 2002; Mante et al., 2013; Hennequin et al., 2014; 

Constantinidis et al., 2018). In the next section, I discuss specific predictions that arise from 

recurrent neural networks for the neural correlates of reward-based decision making, and 

how these predictions have been tested empirically. 

 

Dynamic Neural Correlates of Value Arising from Temporally Extended Processing 

 When deciding between competing courses of action, neural correlates of the value 

of choice alternatives are found widely distributed over prefrontal cortex and other brain 

regions (Hunt & Hayden, 2017). Crucially, these value representations are not static but 

evolve across time as a decision is being made. The temporal evolution of value 

representations is one of the most salient features that can be captured by recurrent 

microcircuit models of PFC. 

Even before an animal commits to an externally observable choice, it may be possible 

to observe the unfolding of an internal process of evidence accumulation and decision 

formation. For example, consider the responses of single units shown in figure 3a, recorded  



 

 

Figure 3. Temporal dynamics of value correlates in PFC during reward-guided decision making, and explanation via a 
recurrent microcircuit model with winner-take-all dynamics. (a) Value correlates during a fixation period, prior to eye-
movement choice, in area 9/46. The lines show, across the neuronal population (n=303 single units), the mean +/- s.e. of the 
coefficient of partial determination for each regressor (variance explained that cannot be accounted for by other regressors 
in the model). The DLPFC population initially reflects the different in value between the left and right options (blue), but later 
in the trial reflects the actual choice made (red). Between these two timepoints is the strongest representation of the chosen 
value (green). (b) The same neurons that strongly represent the action value difference at 300ms also strongly represent the 
chosen action at 700ms. (c) A recurrent network model of decision making, first introduced in (Wang, 2002), in which two 
selective excitatory populations receive noisy inputs that reflect the evidence (value) in favour of each option. Strong recurrent 
excitatory connections in the network allow integration of these inputs, and a pool of non-selective interneurons mediates an 
effective competition via mutual inhibition, where only one selective population reaches a high-firing attractor state. (d) 
Activity in the network approximately 500ms into the decision process, with arrowhead locations showing the current state 
of the network on trials of differing value/chosen option. On easy trials (A>>B or B>>A), the attractor state has almost been 
reached, whereas on difficult trials (A≈B) the network activity is far less advanced towards the final decision. At this point in 
time, network activity therefore correlates with both the option value difference and the chosen value. The representation of 
the chosen option will become strongest later, once all the arrows have reached the attractor state. (e) The value correlates 
that arise from these network dynamics vary across time; the same sequence of value correlates is found in the network 
model as in the data. Adapted from (Hunt et al., 2015). 

from area 9/46 in the dorsal bank of the principal sulcus in dorsolateral PFC (DLPFC) (Hunt et 

al., 2015). These recordings were made while the animal fixated a central fixation point, and 

two pictures were presented on either side of the screen with different values. As the monkey 

fixated, value correlates were observed in these DLPFC neurons that evolved over time (figure 

3a). Initially the neuronal population reflected the difference in values between making a 
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leftward versus a rightward saccade (blue line), but later in the decision process they reflected 

the eventual choice that the animal was about to make (red line). These quantities were not 

represented by separate subpopulations of neurons; instead, those neurons that encoded 

action value difference 300ms into the decision also encoded the chosen action 700ms into 

the decision (figure 3b). Between these two timepoints, there was a representation of the 

value of the chosen option (green line). Similar temporal dynamics separating value and  

choice encoding have also been observed in previous studies (Kim et al., 2008; Louie & 

Glimcher, 2010).  

 How might a recurrent microcircuit give rise to such time-evolving correlates of a 

decision process? A number of studies (Hunt et al., 2015; Rustichini & Padoa-Schioppa, 2015; 

Song et al., 2017) have used variations of the recurrent circuit model shown in figure 3c to 

make predictions of value correlates that might emerge as a consequence of mutual inhibition 

between competing pools of neurons that are selective for different alternatives. The input 

to the selective units is modelled as reflecting the strength of decision evidence for each 

option. Recurrent excitatory connections combined with slow NMDA receptor dynamics (as 

described in the previous section on PFC/ACC microcircuits) support the gradual accumulation 

of evidence in favour of each alternative. Pooled inhibition across the network leads to a 

winner-take-all process, whereby there is a stable attractor state in which one pool of 

selective neurons effectively inhibits the other pools of neurons, a process termed 

‘competition through mutual inhibition’ (figure 3d).  

This model architecture builds upon earlier work that used the same circuit to capture 

the dynamics of cell activity during perceptual evidence integration (Wang, 2002; Wong & 

Wang, 2006), as well as persistent activity during working memory (Wang, 1999). These 

cellular responses are not exclusively found within frontal cortex; indeed, the model was first 



used to explain data collected from posterior parietal cortex (Shadlen & Newsome, 1996; 

Shadlen & Newsome, 2001). However, it can be seen in figure 2b that area 7 within the 

parietal cortex has similar microcircuit and macrocircuit properties to PFC areas, and so 

temporally extended information processing in these areas can be explained using the same 

principles. It is only because the recurrent network has sufficient recurrent excitation and 

long time-constant NMDA receptors that it can sustain persistent activity over long periods 

of time. It therefore provides a biologically plausible mechanism for the implementation of 

temporally extended evidence accumulation within a neural circuit.  

 When such a recurrent network is used to simulate a range of value-based decisions, 

the same regression analysis that was applied to the neuronal data (figure 3a) can also be 

applied to the time-varying network activity. Strikingly, the same sequence of value correlates 

can be found in the network model as in the data (figure 3e) (Hunt et al., 2015). A similar 

approach can also be used to model the temporal dynamics of value correlates observed at a 

mesoscopic (rather than cellular) level: by summing the postsynaptic potentials across all the 

units in the network and using this as a proxy for the local field potential. This reveals an initial 

correlation with the overall sum of presented values (=chosen + unchosen values), followed 

by a later correlation with value difference (=chosen – unchosen values) (Hunt et al., 2012). 

This sequence of value correlates was found both at the level of the macaque local field 

potential (Hunt et al., 2015) and also using magnetoencephalography in humans (Hunt et al., 

2012) which is known to relate to the local field potential (Hämäläinen et al., 1993). The 

network model makes clear that these value correlates emerge as a consequence of a 

dynamical decision process unfolding at different speeds on different trials (figure 3d) (Hunt, 

2014; Hunt & Hayden, 2017), and this was empirically validated in the macaque local field 



potential: value correlates emerge at the times when the temporal derivative (i.e. rate of 

change) of the field potential was greatest (Hunt et al., 2015).  

Although the responses in figure 3 are from area 9/46, it is worth noting that such a 

model also describes value correlates in many other subregions, including the orbitofrontal 

cortex (Hunt et al., 2015; Rustichini & Padoa-Schioppa, 2015), ventromedial prefrontal cortex 

(Hunt et al., 2012), and anterior cingulate cortex (Hunt et al., 2015). This suggests that 

competition through mutual inhibition may be a general property of PFC/ACC microcircuits, 

but that the frame of reference in which competition takes place varies depending upon the 

inputs to each subregion (Cisek, 2012; Hunt & Hayden, 2017).  

It is important to note that none of these models rely upon a direct fit of the model 

dynamics to neural data; instead, the central predictions concern the sequence of value 

correlates, which can be shown to be robust to the exact parameterisation of the model (Hunt 

et al., 2012). While the model parsimoniously accounts for several features of neural data, it 

is also clear that some of this parsimony is an oversimplification. For instance, whereas the 

model consists of discrete pools of selective units, there is much evidence for neurons being 

both positively and negatively tuned for different task features (Kennerley et al., 2009), and 

for this selectivity being mixed (Rigotti et al., 2013) and distributed across the population 

(Mante et al., 2013; Hunt et al., 2018; Yoo & Hayden, 2020). While the nature of population 

coding in PFC/ACC has recently been contested (Hirokawa et al., 2019; Onken et al., 2019), it 

is nevertheless clear that the model simplifies the diversity of neuronal populations in PFC, 

and it does not speak to other properties such as layer-specific computations and interneuron 

diversity. In addition, it assumes that the stimulus values can be directly fed into the network, 

rather than learnt over time via reinforcement; more recent versions of recurrent networks 

address this issue directly (Song et al., 2017). It may also be interesting to consider approaches 



that directly fit the response properties of the model to neural data (Dezfouli et al., 2018), 

and those that are trained on performing a more diverse array of temporally extended 

cognitive tasks (Yang et al., 2019).  

 

The PFC Consists of Multiple Subregions, whose Functional Specialisation is Determined by 

their Macrocircuit Connections 

 Whereas microcircuit specialisations can be considered a property of PFC/ACC circuits 

as a whole, there is functional specialisation within PFC/ACC that arises as a consequence of 

variation in macrocircuit connections. The anatomical connections that a brain area receives 

will determine the information that it receives, and therefore the computations that it can 

perform. This provides a neuroanatomical basis of functional specialisation in the cortex 

(Passingham et al., 2002). PFC and ACC are not unitary brain areas, but instead consist of a 

large number of subregions that can be distinguished based on cytoarchitecture (Petrides & 

Pandya, 1999; Ongur & Price, 2000; Ongur et al., 2003) and, more recently, multimodal 

neuroimaging (Glasser et al., 2016). These subregions are also distinguished from one another 

in terms of their anatomical connections (Ongur & Price, 2000; Haber & Behrens, 2014), and 

this variation can in turn be used to explain the contribution that different subregions make 

to reward-guided decision making and other cognitive tasks.  

 A straightforward way of illustrating the connections of a given cortical area is to plot 

its “connectivity fingerprint” – a polar plot that shows the strength of connectivity to a range 

of other areas of the brain. This allows one to directly compare the similarities and differences 

between different subregions in terms of their connectivity. Connectivity fingerprinting was 

initially performed using data compiled from injection of tract tracers, collated into databases 

to allow statistical comparison of different areas’ fingerprints (Kötter et al., 2001; Passingham 



et al., 2002). More recently, the advent of neuroimaging techniques such as diffusion tensor 

imaging and resting state functional imaging has allowed connectivity fingerprints to be 

directly studied in the living human brain (Jbabdi et al., 2015; Mars et al., 2018a). This has 

facilitated cross-species comparison of anatomical connectivity between humans and other 

primates, supporting direct homologies to be drawn between different species’ cortical 

subregions (Mars et al., 2011; Jbabdi et al., 2013; Sallet et al., 2013; Neubert et al., 2014; 

Neubert et al., 2015; Mars et al., 2018b).  

 One key study (Neubert et al., 2015) performed such a cross-species comparison 

between resting state connectivity in the human brain and the macaque brain, assessing a 

range of brain areas on the orbital and medial surfaces that are central to reward-guided 

decision making. This was also linked to diffusion imaging data collected in the human brain. 

Figure 4a and figure 4b show the results of this analysis for two regions that have frequently 

been studied by neurophysiologists studying neural correlates of reward-guided decision 

making: area 13m in the orbitofrontal cortex (Tremblay & Schultz, 1999; Padoa-Schioppa & 

Assad, 2006; Kennerley et al., 2011; Rudebeck et al., 2013; McGinty et al., 2016; Rich & Wallis, 

2016; Xie et al., 2018), and area 24c in the anterior cingulate cortex (Shidara & Richmond,  

2002; Amiez et al., 2006; Seo & Lee, 2007; Kennerley et al., 2009; Hayden et al., 2011; 

Kennerley et al., 2011; Cai & Padoa-Schioppa, 2012; White et al., 2019).  



 

Figure 4. Connectivity fingerprints of three subregions of PFC and ACC associated with reward-guided decision making. The 
resting state connectivity for each subregion shown in the bottom row was determined using functional MRI in humans and 
macaque monkeys. In each fingerprint, the polar axis reflects the degree of coupling between the subregion and a range of 
other key brain regions. (a) Area 13m in orbitofrontal cortex has particularly strong positive functional coupling with regions 
containing highly processed sensory information in the ventral visual stream (ventrStr), temporal pole (temPol) and perirhinal 
cortex, amongst others. (b) Area 24c in ACC does not show positive coupling with these areas, but instead with parts of 
striatum associated with motor control (caudate/putamen), area 9/46d in the DLPFC, and the supplementary motor area 
(SMA), amongst others. (c) Area 9/46v in the DLPFC shows strong coupling with parts of the parietal cortex in the inferior 
parietal lobule (IPL) that have been associated with attentional reorienting, amongst other regions. n.b. Panel (c) is taken 
from a different study (Sallet et al., 2013) to panels (a)/(b) (Neubert et al., 2015); the same methodology is used, but the 
target regions of interest are different. In panel (c), only positive coupling is shown on the connectivity fingerprint, whereas 
in panels (a)/(b) both positive and negative coupling is shown. It is important to note that connectivity fingerprints measured 
by tractography or functional imaging are not directional (and not all connections are bidirectional, as shown by tract-tracing 
studies (Markov et al., 2014)). Panels (a) and (b) Copyright 2015 National Academy of Sciences. 

Area 13m (but not area 24c) is shown to have particularly strong connections to areas 

in the ventral visual stream and temporal pole amongst others. These contain highly 

processed sensory information, with cells responding to objects that are currently in the 

animal’s field of view (Ito et al., 1995; Booth & Rolls, 1998; Hung et al., 2005; DiCarlo et al., 

2012) (figure 4a). Other studies have also highlighted the connectivity of this region to 

processed sensory information from other modalities, as well as gustatory and olfactory 

cortices (Carmichael & Price, 1995a; Carmichael & Price, 1995b); therefore, this region 

receives multimodal information that can be combined across multiple senses, and may serve 

as a basis for linking this sensory information with reward expectations (Noonan et al., 2012).   

By contrast, area 24c (but not area 13m) possesses strong connections to the 

dorsolateral prefrontal cortex and insula, and also to motoric areas such as the supplementary 
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motor area and the caudate/putamen (figure 4b). This suggests that instead of being 

positioned for linking sensory information to reward, it may be better positioned to guide 

appropriate selection of actions to obtain reward. Although this region does not project 

directly to the spinal cord, it has strong connections to a more posterior part of the cingulate 

sulcus that has direct connections to both spinal cord and primary sensorimotor areas (Van 

Hoesen et al., 1993).  

These connections help to explain the distinct contributions of these areas to reward-

guided decision making. For example, lesions to OFC and ACC produce dissociable 

impairments on learning stimulus-outcome and action-outcome contingencies, respectively 

(Rudebeck et al., 2008; Camille et al., 2011). Area 13m in OFC has neurons that are selective 

for specific juice identities and their values (Padoa-Schioppa & Assad, 2006; Xie & Padoa-

Schioppa, 2016), whereas area 24c in ACC has neurons that are particularly sensitive to the 

movement needed to obtain that juice (Cai & Padoa-Schioppa, 2012). 

It is also important to distinguish area 13m in OFC from another area that has been 

shown to play a central role in valuation for economic choice, in ventromedial PFC. 

Ventromedial PFC is one of the most commonly activated brain regions in human studies of 

economic choice (Bartra et al., 2013; Clithero & Rangel, 2014), and there is some evidence for 

this region also performing value comparison in macaque single cell recordings (Strait et al., 

2014). However, tracer studies in macaques (Ongur & Price, 2000; Saleem et al., 2008) and 

diffusion imaging studies in humans (Neubert et al., 2015) indicate that it belongs to a 

different connectional network from area 13m. It has recently been shown that VMPFC is 

particularly involved when primates are asked to make novel choices that they have not 

previously made before (Bongioanni et al., 2021). This may explain why it is particularly 

commonly found in human imaging studies, where subjects are performing the task for the 



first time, as opposed to animal single-unit recordings, where the animals have often been 

trained for many months on the same task. 

 Further studies have also investigated the connectivity fingerprints of subregions 

within the dorsal frontal cortex - including those on the lateral surface, which is sometimes 

referred to as dorsolateral PFC (DLPFC) (Sallet et al., 2013). Figure 4c shows the connectivity 

fingerprint of one DLPFC subregion on the ventral bank of the principal sulcus, which is the 

ventral portion of area 9/46. Amongst other connections, this subregion has connectivity to 

parts of the inferior parietal lobule such as IPLa that are associated with reorienting of visual 

attention (Thiel et al., 2004). Tract tracer studies from area 9/46 have also highlighted its 

connectivity to a more caudal area around the arcuate sulcus, area 8, which contains the 

frontal eye field (Petrides & Pandya, 1999).  

Amongst other functions, this region might therefore be particularly concerned with 

decisions over where to saccade next when searching for rewards. Indeed, neurons recorded 

from this area have been studied by several groups in the context of eye movement decisions 

based on sensory evidence (Kim & Shadlen, 1999), working memory and attention (Lebedev 

et al., 2004), reinforcement history (Kim et al., 2008), or value-associated stimuli (Cai & 

Padoa-Schioppa, 2014; Hunt et al., 2015). These recordings indicate selectivity of these 

neurons for spatial attention or eye movement preparation. Indeed, it is this area that shows 

the transformation over time from action value encoding to chosen action in figure 3, where 

the choice was made with an eye movement (Hunt et al., 2015). OFC and ACC neurons 

recorded in the same study showed chosen and unchosen value signals, indicating that they 

were involved in the decision process, but they did not show the eye movement-related 

decision signals.  



 This provides an overview of only three ACC/PFC subregions. Yet it is clear that these 

three subregions have very different connectivity fingerprints, and this can be linked to their 

functional specialisation. This contrasts with ‘neurochemical fingerprints’, which as discussed 

in the section on microcircuits appear fundamentally similar across different PFC/ACC 

subregions, but with a single dominant axis of variation across the brain (Geyer et al., 1998; 

Burt et al., 2018).  

  

Different PFC Subregions Make Distinct Contributions to Temporally Extended, Attention-

Guided Choice 

There has been an unacknowledged tension between accounts of decision making 

that focus primarily on functional localisation (Fellows & Farah, 2005; Lee et al., 2007; Buckley 

et al., 2009; Rushworth et al., 2011; Murray & Rudebeck, 2018) or perhaps emphasise the 

contribution of one particular brain region (Padoa-Schioppa & Conen, 2017), versus those 

that focus on computations that may be common across multiple areas (Duncan, 2001; Cisek, 

2012; Siegel et al., 2015; Hunt & Hayden, 2017). Comparatively few neurophysiological 

studies have compared responses across multiple PFC/ACC subregions within the context of 

a single paradigm – but those that have often found subtle and quantitative rather than 

qualitative differences between PFC/ACC subregions (Wallis & Kennerley, 2010; Lee et al., 

2012). 

The two accounts are of course not mutually exclusive, and it is possible that there is 

an element of truth to both. In other words, there may be similarities between PFC/ACC 

subregions in terms of supporting temporally extended cognitive tasks due to their 

microcircuit properties, but differences between which tasks they support due to their 

anatomical connections. However, if we are to identify these differences using 



neurophysiology, it is crucial to design tasks that contain sufficiently rich behaviour to 

distinguish the computations being performed by distinct subregions as a decision unfolds. 

 For example, we have seen that microcircuit models (as shown in figure 3c) can be 

used to describe value-based decision making as a process of evidence accumulation across 

time when fixation is being held. But simple introspection tells us that attention must also 

play a role in the deliberation process. When making a choice, we do not maintain fixation on 

one point in space, but instead we shift our gaze in order to foveate different choice 

alternatives, considering one option at a time. How do we decide where to look next? How 

do our shifts in gaze, which determine the information that we sample from the environment, 

affect the decisions that we ultimately make? How do we decide when to stop sampling 

information, and commit to a final decision? Patterns of shifting eye gaze can be used as a 

window into this process of information sampling (Krajbich et al., 2010; Krajbich, 2019), 

especially in decisions where each option consists of several different attributes that are 

separated in space (Arieli et al., 2011; Glöckner & Herbold, 2011; Stewart et al., 2016). Given 

the close association of certain parts of the PFC/ACC circuitry with brain regions that identify 

currently attended objects and/or reorient attention to new locations in space (figure 4), it 

would be natural to think that neural correlates of decision processes may be strongly shaped 

by attention. 

One recent study (Hunt et al., 2018) recorded neural activity across area 13m in OFC, 

area 24c in ACC, and area 9/46 in DLPFC (cf. figure 4) during a temporally-extended, attention-

guided choice task that involved information sampling across multiple cues. Monkeys were 

trained to make choices using a joystick between two options that consisted of a reward 

probability and a reward magnitude (figure 5a). Crucially, the monkey had to sample this 

information sequentially by making saccadic eye-movements to different locations on the 



screen. This type of experimental design has been used for many decades by psychologists  

and economists interested in how information search unfolds during choice (Payne, 1976; 

Fellows, 2006; Hunt et al., 2016; Stewart et al., 2016).  

As the cues were being sampled, it was possible to examine how their different 

features were represented across the neuronal populations recorded from the three PFC/ACC 

subregions. Each cue was distinguished by its picture identity, how this stimulus was 

predictive of reward value, where it was located on screen, and how it affected the subject’s 

eventual choice. Figure 5b shows the results of a representational similarity analysis 

(Kriegeskorte et al., 2008) performed on the neuronal firing rates shortly after the first cue 

was sampled by the animal. The results showed a clear and qualitative triple dissociation of 

Figure 5. Triple dissociation of attention and decision computations across three PFC subregions during a temporally extended, sequential, 
attention-guided choice task. (a) Task design. Macaque monkeys were presented with a choice between two options (left/right of screen), each 
consisting of two cues (denoting reward probability and magnitude). They revealed the cues by saccading to different locations (blue/grey boxes). 
After two cues had been revealed, monkeys could sample the remaining cues or could make a joystick response to indicate their choice. The first two 
cue locations were experimenter-controlled, such that all locations were equally sampled at the first cue, and half of all trials were “attribute” trials 
(i.e. the second cue was the same attribute (probability/magnitude) on the other option) whereas the other half were “option” trials (i.e. the second 
cue was the other attribute on the same option). (b) Representational similarity analysis (RSA) of each region’s population firing rates, ~300ms after 
the first cue has been acquired. Each ‘pixel’ in the matrix reflects the degree of similarity (correlation) between two conditions, sorted by whether 
the picture is on the left/right of the screen, whether it represents reward probability/magnitude, and how valuable the picture is (1=least valuable, 
5=most valuable). Several key task features can be encoded using ‘templates’ (bottom row) which are then regressed onto the RSA matrices; each 
of these are found to be strongly represented in some subregions but not in others. Adapted from (Hunt et al., 2018). 



function between the three subregions. Area 13m in OFC encoded the identity of the 

currently attended stimulus and the value of that stimulus, but has little information about 

its spatial position. Area 9/46 in DLPFC most strongly encoded the spatial location of where 

the monkey deployed their (overt) attention to sample this stimulus, as well as a value signal  

in the frame of reference of left/right spatial position. Area 24c in ACC also carried this 

left/right value signal. However, its dominant feature was a value coding signal that appeared 

to categorise stimuli into whether they were better than the average stimulus (and so might 

eventually be ‘accepted’) or worse than average (and so might eventually be ‘rejected’). 

In addition to this dissociation at the first cue, it was possible to study how information 

was combined when further cues were sampled in order to form a decision (figure 6a). In OFC, 

when monkeys sampled a cue on one option and a second cue on the other option, these 

cues should be compared in order to start to make a decision. It was found that there was a 

negative relationship between the value code for the currently attended cue and that for the 

previously attended cue (figure 6b) (Strait et al., 2014). Moreover, on trials where the animal 

sampled two cues on one option and a third cue on the other option, the two remembered 

cues were now positively correlated in terms of their value code (figure 6c), but were both 

negatively correlated with the value code of the currently attended option. In other words, 

the memory of two previously attended cues appeared to be flexibly combined in OFC, 

allowing for comparison with the currently attended cue.  

How did this attention-guided value comparison support the animal’s commitment to 

a final choice? Two key signals in the ACC provided insight into this process (figure 6d/e). First, 

it was possible to define each cue according to whether it confirmed what the animal currently 

might believe to be the best option, or disconfirmed it. A stable ACC population subspace was 



found to encode this “belief confirmation” regressor. Activity in this subspace peaked  

 

Figure 6. Value comparison, and commitment to a final decision, during sequential attention-guided choice. The data 
shown are from the paradigm in figure 6a, as the subject moves beyond sampling the first cue (figure 6b) and samples further 
information then commits to a choice. (a) In OFC, the value of the currently attended cue is strongly represented ~300ms 
after it is sampled, but previously attended cues do not return to baseline – instead, there is a ‘memory trace’ of these cues 
in OFC activity. (b) On ‘attribute’ trials (see figure 6a for details), when cue 2 is fixated there is a negative relationship between 
encoding of the currently attended value versus the previously attended value. (c) On ‘option’ trials, when cue 3 is fixated 
there is a positive relationship between encoded of the two previously attended attributes (cue 1 value and cue 2 value), both 
of which are on the other option. These are also both negatively correlated with the currently attended, cue 3 value (not 
shown). (d) Population activity in ACC, projected along a subspace which is defined by whether the currently attended cue 
confirms the animal’s belief as to which option is best. Trials are sorted into bins of different joystick reaction time; it is shown 
that activity ramps in this subspace immediately prior to a final commitment to a decision. (e) Population activity in ACC, 
projected along an orthogonal subspace defined by the final left/right joystick choice of the animal. It is shown that activity 
in this subspace gradually ramps towards a final leftward/rightward choice. Adapted from (Hunt et al., 2018). 

immediately prior to the time when the animal committed to a joystick choice (figure 6d). At 

the same time, an orthogonal subspace in ACC represented an emerging plan for which choice 

(left or right) the animal was going to make with the joystick; this also peaked immediately 

prior to the decision (figure 6e). These two signals are in some ways an elaboration of the 
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signals observed in ACC at the first cue (figure 5b) - the “accept/reject” code is akin to a belief 

updating signal (but in the absence of any prior belief), and the “left/right value” code is the 

precursor to the commitment to a final left/right choice. It is likely that these two codes 

should influence one another, such that the belief confirmation signal can inform the plan for 

a choice, but this remains to be directly tested. 

The results from this study could be interpreted in different ways. On the one hand, 

the presence of an attention-guided value comparison code in OFC, and an accumulator-like 

signal in ACC for the final action plan, corresponds very well to the core components of 

‘attentional drift diffusion’ models of reward-based choice. This is an extension of the classical 

drift diffusion model (Ratcliff & McKoon, 2008) in which evidence accumulation is biased by 

the locus of visual attention (Krajbich et al., 2010; Krajbich, 2019). Notably, the drift diffusion 

model can be shown to be formally related to the microcircuit models introduced earlier in 

this review (Bogacz et al., 2006). A similar neuroanatomical account of the attentional drift 

diffusion framework was first introduced by Rangel and colleagues, largely on the basis of 

functional imaging evidence (Rangel & Hare, 2010; Hare et al., 2011; Lim et al., 2011; McGinty 

et al., 2016).  

On the other hand, some of the signals observed in ACC – the accept/reject code at 

the first cue, and the belief confirmation code as further cues are sampled – may fit more 

neatly into accounts of economic choice where decisions are framed as serial ‘accept/reject’ 

choices rather than between two mutually exclusive alternatives (Cisek, 2012; Hayden, 2018). 

The decisions that primates (and other animals) evolved to make rarely consisted of a few 

mutually exclusive alternatives, but instead of decisions about how to forage for food. These 

might consist of a sequence of decisions about whether to accept or reject a currently 

presented choice alternative. It is likely the brain will be functionally specialised to support 



such foraging decisions (Kolling et al., 2012), and many economic choices could be reframed 

as sequential decisions about whether to accept or reject a currently favoured alternative 

(Hayden, 2018). 

Reconciling the ‘evidence accumulation’ framework for economic choice and the 

‘foraging’ or ‘accept/reject’ framework may require a step towards even more naturalistic 

decision paradigms. Formal algorithms have been developed to account for choice behaviour 

in such foraging decisions (Stephens & Krebs, 1986; Mobbs et al., 2018), but only recently 

have attempts been made to directly link foraging decisions to accumulator models (Davidson 

& El Hady, 2019). Decisions need not only include information sampling (Kaanders et al., 

2020), but also consist of multiple alternatives that are encountered in a sequential rather 

than simultaneous fashion. There have been recent movements towards studying such 

decision making in the field (Kolling et al., 2012; Sweis et al., 2018; Yoo et al., 2020), and it is 

perhaps the study of these types of sequential decision that provide scenarios even closer to 

those faced by the decision-maker in the supermarket or the early primate amongst the 

arboreal branches. 

 

Conclusions and future directions 

 Since the first studies began to investigate the neural basis of economic decision 

making just over 20 years ago (Shizgal, 1997; Platt & Glimcher, 1999), the field has made 

tremendous progress. This review has focussed on circuit specialisations supporting the 

sequential, temporally extended and attention-guided computations that are common to 

humans and other primates in making these decisions. I have argued that PFC/ACC as a whole 

contains recurrent microcircuit specialisations that support temporally extended information 

processing, but that the distinct anatomical connections of PFC/ACC subregions lead to them 



making distinct contributions to reward-guided choice. In both cases, it has been possible to 

link the properties of neurophysiological recordings to these circuit specialisations.  

A number of outstanding questions remain to be addressed. Firstly, the study of circuit 

specialisations at the microcircuit level and functional specialisations at the macrocircuit level 

have been treated as broadly separate problems; very few circuit models have been 

developed that encompass multiple interacting regions in the service of solving cognitive 

tasks. This raises the question as to how best to specify such a model of PFC and ACC circuits, 

how it should be tested, and what benefits might arise from having regional specialisation in 

such a model (as opposed to, for example, all-to-all connectivity). It seems likely that such an 

account may benefit from initially avoiding questions of biological plausibility; indeed, 

inspiration may be drawn from recent findings in developing recurrent neural networks in 

machine learning, where modularity and hierarchy conveys certain advantages in performing 

temporally extended tasks (Chung et al., 2016). On the other hand, it is also possible that 

certain biological constraints are essential for considering why the PFC and ACC consist of 

multiple subregions with some degree of functional specialisation - for example, this may be 

necessary to constrain wiring length within the circuit. Such a hypothesis could again be 

explored in silico, by training networks to approximate multi-region neuronal data (Perich et 

al., 2020) while introducing sparsifying constraints on network connections into the cost 

function used to train the network. 

Secondly, although the studies discussed in this review have focussed on the 

introduction of attention as one means to study more naturalistic decision problems, it is also 

clear that primates have other unique cognitive capabilities that need to be incorporated into 

experimental tasks, and considered in terms of circuit specialisation. For instance, primates 

are advanced in their abilities of flexibly generalising and reusing knowledge from one 



decision problem to other closely related problems (Behrens et al., 2018), and they also have 

unique abilities to learn about the hierarchical structure of decision problems, and execute 

long-term sequences of behaviour in accordance with this structure (Conway & Christiansen, 

2001). These questions have now been well formalised at the algorithmic level in the 

framework of reinforcement learning, and neural correlates of task state representations 

(Niv, 2019), generalisation and hierarchical structure (Ribas-Fernandes et al., 2011; Donoso 

et al., 2014) have been observed in various subregions of PFC. However, it is unclear what PFC 

circuit specialisations are fundamental for these kinds of behaviours, and whether these can 

also be considered at the microcircuit and macrocircuit level. 

Thirdly, many of the key predictions of the framework outlined in this review remain 

to be tested. For example, is variation in the local correlates of a decision process predicted 

by the anatomical connections and microcircuit properties of the circuit? Although many of 

the regions studied in this review appear to carry multiple signals during the course of a 

decision process, a natural hypothesis is that these should actually be separable and align 

with the anatomical connections of the circuit. For example, neurons in area 13m that receive 

direct projections from sensory areas should be those best positioned to learn the value 

associated with specific stimuli, whereas neurons in layer III that have mostly recurrent 

connectivity should be primarily responsible for subserving competition through mutual 

inhibition. The development of new tools for interrogating neural circuits, such as novel 

recording techniques to sample many neurons from multiple layers and brain regions 

simultaneously (Siegel et al., 2015; Steinmetz et al., 2019), alongside circuit manipulation 

tools, should allow such questions to be tested more directly. 

Addressing these challenges means that advances cannot be made only in circuit 

modelling, data recording and analysis techniques, but it will also be crucially important to 



think about studying far richer, more naturalistic behavioural repertoires. The study of rich, 

ethologically valid behaviour can build upon the foundations laid by studying simpler, 

mutually exclusive forced-choice scenarios, which are the basis of much of the work 

presented in this review. 
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