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Abstract 

Standard event-related potential analysis assumes fixed-latency responses relative to 

experimental events – yet recent single unit recordings have revealed neural activity scales to 

span different durations during behaviours demanding flexible timing. We use a novel 

approach to unmix fixed-time and scaled-time components in human electroencephalography, 

recorded across three tasks. A consistent and distinct scaled-time component is revealed, 

demonstrating temporal scaling can reliably be measured at the scalp.  
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Introduction 1 

Action and perception in the real world require flexible timing. We can walk quickly or 2 

slowly, recognize the same piece of music played at different tempos, and form temporal 3 

expectations over long and short intervals. Flexible timing is critical in our lives, yet its 4 

neural correlates have proven difficult to study. One source of difficulty is disagreement over 5 

how the brain represents time. For example, the classic pacemaker-accumulator model 6 

(Treisman, 1963) relies on a dedicated timing mechanism. Other models represent time 7 

intrinsically through oscillatory alignment (Matell & Meck, 2004) or network population 8 

dynamics (Buonomano & Maass, 2009). However, it has recently been shown that brain 9 

activity at the level of individual neurons can be best explained by a temporal scaling mode 10 

(Wang et al., 2018).   11 

When monkeys are cued to produce either a short or a long interval, medial frontal cortex 12 

(MFC) unit activity can be explained by a single response that is stretched or compressed 13 

according to the length of the produced interval – a temporally scaled response. This suggests 14 

that flexible motor timing is achieved by adjusting the speed of a common neural process. 15 

Temporal scaling of neural responses is also implicit in other settings, such as the process of 16 

evidence integration during decision making (O’Connell et al., 2018). Indeed, recent 17 

approaches to studying time-warped responses in neural populations have revealed time-18 

warping as a common property across many different population recordings (Williams et al., 19 

2020).  20 

It is currently unclear how temporal scaling of neural responses may manifest at the scalp 21 

(if at all) using non-invasive recording in humans. Although electroencephalography (EEG) 22 

has played a prominent role in understanding the neural basis of timing (Macar & Vidal, 23 

2004), the method commonly used to analyse such data has been the event-related potential 24 

(ERP), which averages event-locked EEG across multiple repetitions. This implicitly assumes 25 
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that neural activity occurs at fixed-time latencies with respect to experimental events. 26 

Sometimes these event-related potentials have been found to ramp at different speeds for 27 

different temporal intervals (Macar & Vidal, 2004), perhaps suggestive of temporal scaling - 28 

but crucially, they appear mixed at the scalp with fixed-time components, due to the 29 

superposition problem (Chapter 2 in Luck, 2014). 30 

We therefore developed an approach to unmix scaled-time and fixed-time components in 31 

the EEG, which we first tested on simulated data (Fig. 1a). Our proposed method builds on 32 

existing regression-based approaches (Ehinger & Dimigen, 2019; Smith & Kutas, 2015a) that 33 

have proven useful in unmixing fixed-time components that overlap, e.g. stimulus-related 34 

activity and response-related activity. These approaches estimate the ERP using a general 35 

linear model (GLM) in which the design matrix is filled with time-lagged dummy variables 36 

(1s around the events of interest, 0s otherwise). Importantly, these ‘stick functions’ can 37 

overlap in time to capture overlap in the underlying neural responses (Fig. 1b); in situations 38 

without any overlap, the GLM would exactly return the conventional ERP. To reveal scaled-39 

time responses, we allowed the duration of the stick function to vary depending upon the 40 

interval between stimulus and response, meaning that the same neural response could span 41 

different durations on different trials. As such, the returned scaled-time potential is no longer 42 

a function of real-world (‘wall clock’) time, but instead a function of the percentage of time 43 

elapsed between stimulus and response.  44 

Results 45 

As a proof of concept, we simulated data for at a single EEG sensor for an interval timing 46 

task, consisting of two fixed-time components (locked to cues and responses), and one scaled-47 
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time component spanning between cues and responses (Fig. 1a). Our proposed method was 48 

successful in recovering all three components (Fig. 1c), whereas a conventional ERP 49 

Figure 1. Regression based unmixing of simulated data successfully recovers scaled-time and fixed-time components. (a) EEG data were 
simulated by summing fixed-time components (cue and response), a scaled-time component with differing durations for different trials (short, 
medium, or long), and noise. (b) The simulated responses were unmixed via a GLM with stick basis functions: cue-locked, response-locked, 
and a single scaled-time basis spanning from cue to response. (c) The GLM successfully recovered all three components, including the scaled-
time component. (d) A conventional ERP analysis (cue-locked and response-locked averages) of the same data obscured the scaled-time 
component. 
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approach obscured the scaled-time component (Fig. 1d). Crucially, in real EEG data we also 50 

repeat this approach across all sensors, potentially revealing different scalp topographies (and 51 

hence different neural sources) for fixed-time versus scaled-time components. 52 

We used this approach to analyze EEG recorded during three interval timing tasks 53 

(Supplementary Fig. 1). In one task, participants produced a target interval (short, medium, or 54 

long) following a cue. Feedback was provided, and participants were able to closely match 55 

the target intervals. In a second, participants evaluated a computer-produced interval. The 56 

closer the produced interval was to the target interval, the more likely participants were to 57 

judge the response as ‘on time’. In a third (previously analyzed (Breska & Deouell, 2017a, 58 

2017b)) task, participants made temporal predictions about upcoming events based on 59 

rhythmic predictions. 60 

In all three tasks, we observed a scaled-time component that was distinct from the 61 

preceding and following fixed-time components (Fig. 2), which resembled conventional 62 

ERPs (Supplementary Fig. 3). Typically, ERP components are defined by their polarity, scalp 63 

distribution, and latency (Luck, 2014). The observed scaled-time components shared a 64 

common polarity (negative) and scalp distribution (central), which is notably consistent with 65 

the medial frontal recording site where temporally scaled single-unit responses were 66 

previously identified (Wang et al., 2018). Although our scaled-time components were 67 

estimated by time-warping a common signal so that they could span a variable delay period, 68 

their ‘latency’ was nevertheless consistent, in that the scaled-time signal grew and appeared 69 

to peak later in the timed interval. This is again reminiscent of the time course of scaled time 70 
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components across the neural population in medial frontal recordings (Wang et al., 2018). 71 

Single-sample t-tests of the mean voltage in the shaded regions in Fig. 2 revealed a 72 

significant scaled-time signal in the production task (t(9) = -3.19,  p = .01, Cohen’s d = -73 

1.01), the perception task (t(9) = -4.79,  p = .001, Cohen’s d = -1.52), and the prediction task 74 

(t(18) = -4.03,  p < .001, Cohen’s d = -0.92). In many cases, scaled-time components were 75 

reliably observed at the single-subject level (Supplementary Figs. 4-6). 76 

Figure 2. Scaled-time components were consistently observed across three time-estimation paradigms, with distinct scalp topographies 
from fixed-time components. Data were analysed from: (a) a temporal production task; (b) a temporal judgement task; (c) a temporal 
prediction task11,12. All had distinct fixed-time components relative to task-relevant events (left/middle columns), and a common negative 
scaled-time component over central electrodes, reflecting interval time (right column). Error bars represent 95% confidence intervals. 
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We then examined how the scaled-time component related to behavioural variability: 77 

does the latency of the scaled-time component predict participants’ response time? To 78 

measure component latency, we applied an approach developed in Hunt et al. (2015) and 79 

Möcks (1986), using principal component analysis (PCA) to model delay activity over central 80 

electrodes in the temporal production task, after first regressing out fixed-time components 81 

from the data. PCA was applied separately to each of three produced intervals. This 82 

consistently revealed a first principal component that matched the shape of the scaled-time 83 

component identified in Fig. 2a, and a second principal component that matched its temporal 84 

derivative. This analysis not only provides an additional way of confirming the presence of 85 

the scaled-time component in our data (as it is the first principal component of the residuals 86 

after removing fixed-time components), but crucially adding or subtracting PC2 captures 87 

variation in the latency of this scaled-time component (Fig. 2b). Across response time 88 

quantiles, we found that PC2 scores were significantly related to response times (Fig. 3c; 89 

F(2,18) = 9.05, p = .002). This implies that the earlier in time that the scaled-time component 90 

peaked, the faster the subject would respond on that trial. Note, however, that within-91 

condition behaviour was highly consistent in Task 1 (Supplementary Fig. 2); we would 92 

therefore expect the relationship between scaled-time component latency and behaviour to be 93 

even stronger in tasks with greater response variability between trials. 94 
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Discussion 95 

Our results provide a general method for recovering temporally scaled signals in 96 

human EEG, where scaled-time components are mixed at the scalp with conventional fixed-97 

Figure 3. Variation in scaled-time components predict behavioural variation in time estimation. (a) Cue-locked EEG over central 
electrodes (FC1, FCz, FC2, Cz, CP1, CPz, CP2) was grouped by response time (early, on time, or late), averaged, and stacked for each target 
interval (short, medium, or long). Data for one participant is shown. A separate PCA was run for each target interval and participant. (b) The 
first two principal components for each target interval represent the amplitude (PC1) and first derivative (PC2) of the time-scaled component 
(top panel). Adding or subtracting different amounts of PC2 to PC1 shifted the peak earlier or later in time (bottom panel). (c) PC2 scores 
depended on response time, implying the scaled-time component peaked earlier for fast responses and later for slow responses. Error bars 
represent 95% confidence intervals. 
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time ERPs. We focused here on interval production and perception, but we anticipate other 98 

temporally scaled EEG and MEG signals will be discovered for cognitive processes known to 99 

unfold over varying timescales. For example, the neural basis of flexible sequential 100 

behaviours (such as speech) is still unknown, but may involve a form of temporal scaling 101 

(Remington et al., 2018). Flexible timing is also important in decision-making tasks, where 102 

evidence accumulation can proceed quickly or slowly depending on the strength of the 103 

evidence (O’Connell et al., 2018). Flexible timing can help facilitate a range of adaptive 104 

behaviours via temporal attention (Nobre & van Ede, 2018), while disordered timing 105 

characterizes several clinical disorders (Allman & Meck, 2012), underscoring the importance 106 

of characterising temporal scaling of neural responses in human participants.  107 
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Methods 108 

Simulations 109 

 We simulated cue-related and response-related EEG in a temporal production task 110 

using MATLAB 2020a (Mathworks, Natick, USA). Cue and response were separated by 111 

either a short, medium, or long interval. During the delay period, we simulated a scaled 112 

response that stretched or compressed to fill the interval. All three responses (cue, response, 113 

scaled) were summed together at appropriate lags (short, medium, or long), with noise – see 114 

Fig. 1a. In total, we simulated 50 trials of each condition (short, medium, long).   115 

 To unmix fixed-time and scaled-time components, we used a regression-based 116 

approach (Ehinger & Dimigen, 2019; Smith & Kutas, 2015a, 2015b) in which the continuous 117 

EEG at one sensor Y is modelled as a linear combination of the underlying event-related 118 

responses b, which are unknown initially. The model can be written in equation form as: 119 

𝑌 = 𝑋b	 + 	e	 120 

where X is the design matrix and e is the residual EEG not accounted for by the model. X 121 

contains as many rows as EEG data points, and as many columns as predictors (that is, the 122 

number of points in the estimated event-related responses). In our case, X was populated by 123 

‘stick functions’ – non-zero values around the time of the modelled events, and zeros 124 

otherwise. We included in X two fixed-time components, the cue and the response, as stick 125 

functions of set EEG duration (with variables set to 1). In other words, the height of the 126 

fixed-time stick function was constant across events of the same type and equal to its width. 127 

To model a temporally-scaled response, we used the MATLAB imresize function (Image 128 

Processing Toolbox, R2020b) with ‘box’ interpolation to stretch/compress a stick function so 129 

that it spanned the duration between cue and response (other interpolation methods were tried 130 

– see Supplementary Fig. 7 – but this choice had little effect on the results). Thus, the 131 

duration of the scaled stick function varied from trial to trial (Fig. 1b). The goal here was to 132 
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estimate a single scaled-time response to account for EEG activity across multiple varying 133 

delay periods. For the fixed-time responses, each column of X represents a latency in ms 134 

before/after an experimental event; by contrast, for the scaled-time responses, each column of 135 

X represents the percentage of time that has elapsed between two events (stimulus and 136 

response). Simulation code is available at https://git.fmrib.ox.ac.uk/chassall/temporal-scaling. 137 

Production and Perception Tasks 138 

Participants 139 

Participants completed both the production and perception tasks within the same 140 

recording session. We tested ten university-aged participants, 5 male, 2 left-handed, Mage = 141 

23.40, 95% CI [21.29, 25.51]. Participants had normal or corrected-to-normal vision and no 142 

known neurological impairments. Participants provided informed consent approved by the 143 

Medical Sciences Interdivisional Research Ethics Committee at the University of Oxford. 144 

Following the experiment, participants were compensated £20 (£10 per hour of participation) 145 

plus a mean performance bonus of £3.23, 95% CI [2.92, 3.55]. 146 

Apparatus and Procedure 147 

 Participants were seated approximately 64 cm from a 27-inch LCD display (144 Hz, 1 148 

ms response rate, 1920 by 1080 pixels, Acer XB270H, New Taipei City, Taiwan). Visual 149 

stimuli were presented using the Psychophysics Toolbox Extension (Brainard, 1997; Pelli, 150 

1997) for MATLAB 2014b (Mathworks, Natick, USA). Participants were given written and 151 

verbal instructions to minimize head and eye movements. The goal of the production task 152 

was to produce a target interval and the goal of the perception task was to judge whether or 153 

not a computer-produced interval was correct.  154 

The experiment was blocked with ten trials per block. There were 18 production 155 

blocks and 18 perception blocks, completed in random order. Prior to each block, participants 156 

listened to five isochronic tones indicating the target interval. Beeps were 400 Hz sine waves 157 
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of duration 50 ms and an onset/offset ramping to a point 1/8 of the length of the wave (to 158 

avoid abrupt transitions).  The target interval was either short (0.8 s), medium (1.65 s), or 159 

long (2.5 s). 160 

In production trials, participants listened to a beep then waited the target time before 161 

responding. Feedback appeared after a 400-600 ms delay (uniform distribution) and remained 162 

on the display for 1000 ms. Feedback was a ‘quarter-to’ clockface to indicate ‘too early’, a 163 

‘quarter-after’ clockface to indicate ‘too late’, or a checkmark to indicate an on-time 164 

response. Feedback itself was determined by where the participant’s response fell relative to a 165 

window around the target duration. The response window was initialized to +/- 100 ms 166 

around each target, then changed following each feedback via a staircase procedure: 167 

increased on each side by 10 ms following a correct response and decreased by 10 ms 168 

following an incorrect response (either too early or too late).  169 

In perception trials, participants heard two beeps, then were asked to judge the 170 

correctness of the interval, that is, whether or not the test interval matched the target interval. 171 

Test intervals (very early, early, on time, late, very late) were set such that each subsequent 172 

interval was 25% longer than the previous (see Supplementary Table 1). Participants were 173 

then given feedback on their judgement – a checkmark for a correct judgement, or an ‘x’ for 174 

an incorrect judgement.  175 

For each task, participants gained 2 points for each correct response and lost 1 point 176 

for each incorrect response. At the end of the experiment points were converted to a monetary 177 

bonus at a rate of £0.01 per point.  178 

Data Collection 179 

In the perception task we recorded participant response time from cue, trial outcome 180 

(early, late, on time), and staircase- response window. In the production task, we recorded 181 

trial ‘on time’ judgements (yes/no), and trial outcome (correct/incorrect). 182 
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We recorded 36 channels of EEG, referenced to AFz. Data were recorded at 1000 Hz 183 

using a Synamps amplifier and CURRY 8 software (Compumetrics Neuroscan, Charlotte, 184 

USA). The electrodes were sintered Ag/AgCl (EasyCap, Herrsching, Germany). 31 of the 185 

electrodes were laid out according to the 10-20 system. Additional electrodes were placed on 186 

the left and right mastoids, on the outer canthi of the left and right eyes, and below the right 187 

eye. The reference electrode was placed at location AFz, and the ground electrode at Fpz.  188 

Prediction Task 189 

 In this previously published (Breska & Deouell, 2017a, 2017b) experiment, 19 190 

participants responded to the onset of a visual target following a visual warning cue. The 191 

delay between cue and target was either short (700 ms) or long (1300 ms) and, in some 192 

conditions, congruent with a preceding stimulus stream. Only these predictable trials were 193 

included in the current analysis (i.e., the ‘valid’ trials in the ‘Rhythmic’ and ‘Repeated-194 

Interval’ conditions – see Breska and Deouell, 2017a, 2017b for more detail). 195 

Data Analysis 196 

Behavioural data 197 

For the perception task, we computed mean window size and mean produced interval 198 

for each participant. For the production task, we computed mean likelihood of responding yes 199 

to the ‘on time’ prompt, for each condition (short, medium, long) and interval (very early, 200 

early, on time, late, very late).  201 

EEG Preprocessing 202 

For all three tasks, EEG was preprocessed in MATLAB 2020b (Mathworks, Natick, 203 

USA) using EEGLAB (Delorme & Makeig, 2004).  We first down-sampled the EEG to 200 204 

Hz, then applied a 0.1-20 Hz bandpass filter and 50 Hz notch filter. The EEG was then re-205 

referenced to the average of the left and right mastoids (and AFz recovered in the 206 

production/perception tasks). Ocular artifacts were removed using independent component 207 
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analysis (ICA). The ICA was trained on 3-second epochs of data following the appearance of 208 

the fixation cross at the beginning of each trial. Ocular components were identified using the 209 

iclabel function and then removed from the continuous data.  210 

ERPs 211 

To construct conventional event-related potentials (ERPs), we first created epochs of 212 

EEG around cues (all tasks), responses (perception task), probes (production task), and 213 

targets (prediction task). Cue-locked ERPs extended from 200 ms pre-cue to either 800, 1650, 214 

or 2500 ms post-cue (the short, medium, and long targets) in the perception/production tasks 215 

and 700 or 1300 ms in the prediction task (the short and long targets). Epochs were baseline-216 

corrected using a 200 ms pre-cue window. We also constructed epochs from 800, 1650, or 217 

2500 ms prior to the response/probe in the production/perception tasks and 700 or 1300 ms 218 

prior to the target in the prediction task to 200 ms after the response/probe/target. A baseline 219 

was defined around the event of interest (mean EEG from -20 to 20 ms) and removed. We 220 

then removed any trials in which the sample-to-sample voltage differed by more than 50 µV 221 

or the voltage change across the entire epoch exceeded 150 µV. Cue and 222 

response/probe/target epochs were then averaged for each participant, task (production, 223 

perception, prediction), and condition (short, medium, long). Finally, participant averages 224 

were combined into grand-average waveforms at electrode FCz, a location where timing-225 

related activity has been previously observed (Macar & Vidal, 2004). See Supplementary Fig. 226 

3. 227 

rERPs 228 

 To unmix fixed-time and scaled-time components in our EEG data, we estimated 229 

regression-ERPs (rERPs) following the same GLM procedure we used with our simulated 230 

data, but now applied to each sensor. We used a design matrix consisting of a regular stick 231 

functions for cue and response/probe/target and a stretched/compressed stick function 232 
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spanning the interval from cue to response/probe/target. In particular, we estimated cue-233 

locked responses that spanned from 200 ms pre-cue to 800 ms post-cue. The 234 

response/probe/target response interval spanned from -800 to 200 ms. Each fixed-time 235 

response thus spanned 1000 ms, or 200 EEG sample points. The scaled-time component, as 236 

described earlier, was modelled as a single underlying component (set width in X) that 237 

spanned over multiple EEG durations (varying number of rows in X). Thus, our method 238 

required choosing how many scaled-time sample points to estimate (the width in X). For the 239 

production/perception tasks, we chose to estimate 330 scaled-time points, equivalent to the 240 

duration of the ‘medium’ interval. For the prediction task, we chose to estimate 200 scaled-241 

time points, equivalent to the mean of the short and long conditions (700 ms, 1300 ms). 242 

Unlike the conventional ERP approach, this analysis was conducted on the continuous EEG. 243 

To identify artifacts in the continuous EEG, we used the basicrap function from the ERPLAB 244 

(Lopez-Calderon & Luck, 2014) toolbox with a 150 µV threshold (2000 ms window, 1000 245 

ms step size). A sample was flagged if it was ‘bad’ for any channel. Flagged samples were 246 

excluded from the GLM (samples removed from the EEG and rows removed from the design 247 

matrix). Additionally, we removed samples/rows associated with unusually fast or slow 248 

responses in the production task (less than 0.2 s or more than 5 s). On average, we removed 249 

2.17 % of samples in the production task (95% CI [1.49, 2.86]), 3.75 % of samples in the 250 

perception task (95% CI [2.39, 5.10]), and 1.03% of samples in the prediction task (95% CI 251 

[0.95, 1.10]).  252 

To impose a smoothness constraint on our estimates, we used a first-derivative form 253 

of Tikhonov regularization. Tikhonov regularization reframes the GLM solution as the 254 

minimization of: 255 

‖𝑋b− Y	‖! + 	λ‖Lb‖! 256 
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where L is the regularization operator and l is the regularization parameter. In other words, 257 

we aimed to minimize a penalty term in addition to the usual residual. This has the solution 258 

(𝑋"𝑋 + 	λL)#$𝑋"𝑌 259 

In our case, L approximated the first derivative as a scaled finite difference (Reichel & Ye, 260 

2008): 261 

𝐿 =
1
2	0

1 −1 0 … 0 0
0 1 −1 … 0 0
… … … … … …
0 0 0 … 1 −1

3 262 

We then chose regularization parameters for each participant using 10-fold cross validation. 263 

Our goal here was to minimize the mean-squared error of the residual EEG at electrode FCz, 264 

our electrode of interest. The following ls were tested on each fold: 0.001, 0.01, 0, 1, 10, 265 

100, 1000, 10000, 100000. An optimal l was chosen for each participant corresponding to 266 

the parameter with the lowest mean mean-squared error across all folds. See Supplementary 267 

Table 3 for a summary. 268 

Inferential Statistics 269 

We quantified the amplitude of the scaled-time component in two ways. First, we 270 

computed a 95% confidence interval at each ‘timepoint’ in the scaled-time signal. Next, in 271 

line with conventional ERP analyses (Luck, 2014), we computed the mean signal around the 272 

apparent peak. We then confirmed the existence of the signal using a single-sample repeated-273 

measures t-test. These analyses were done at the scalp location where the mean signal was 274 

greatest, i.e. electrode Cz in the production/perception tasks and FCz in the prediction task. 275 

PCA 276 

 To explore the link between the scaled-time component and behaviour, we regressed 277 

out the fixed-time components from the EEG in the temporal production task – that is, we 278 

reconstructed the preprocessed data using only the scaled-time regressors plus residuals. Only 279 

mid-frontal electrodes were considered: FC1, FCz, FC2, Cz, CP1, CPz, and CP2. We then 280 
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constructed epochs starting at the cue and ending at the target interval (800 ms, 1650 ms, or 281 

2500 ms). Epochs within each condition (short, medium, long) were further grouped into 282 

three equal-sized response-time bins (early, on time, late) and averaged for each electrode 283 

and participant (Fig. 3a). We then conducted a PCA for each condition (short, medium, long) 284 

and participant. See Supplementary Table 2 for amount of variance explained by PC1 and 285 

PC2. To visualize the effect of PC2, we computed the mean PC2 across all participants. We 286 

then added more or less of the mean PC2 to the mean PC1 projection and applied a 25-point 287 

moving-mean window for visualization purposes (Fig. 3b). In order to choose a reasonable 288 

range of PC2 scores, we examined the average minimum and maximum PC2 score for each 289 

participant and condition (short, medium, long). The PC2 score ranges were -21 to 15 (short), 290 

-41 to 38 (medium), and -40 to 55 (long). To assess the relationship between PC2 score and 291 

behaviour, we binned PC2 scores according to our response time bins (early, on time, late) 292 

and collapsed across conditions (short, medium, long). This gave us as single mean PC2 293 

score for each participant and response time bin (early, on time, late), which we analyzed 294 

using a repeated-measures ANOVA (Fig. 3c). 295 

Data Availability 296 

Raw and preprocessed EEG for the production and perception tasks will be made publicly 297 

available at the time of publication. Raw data for the prediction task is available at 298 

https://doi.org/10.5061/dryad.5vb8h. 299 

Code Availability 300 

Simulation and analysis scripts are available at https://git.fmrib.ox.ac.uk/chassall/temporal-301 

scaling. 302 
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