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Abstract 
Decision-making not only requires agents to decide what to choose, but also how much 
information to sample before committing to a choice. Previously established frameworks for 
economic choice argue for a deliberative process of evidence accumulation across time. 
These tacitly acknowledge a role of information sampling, in that decisions are only made 
once sufficient evidence is acquired, yet few experiments have explicitly placed information 
sampling under the participant’s control. Here, we use functional MRI to investigate the 
neural basis of information sampling in economic choice, by allowing participants to actively 
sample information in a multi-step decision task.  We show that medial frontal cortex (MFC) 
activity is predictive of further information sampling prior to choice. Choice difficulty (inverse 
value difference) was also encoded in MFC, but this effect was explained away by the 
inclusion of information sampling as a co-regressor in the general linear model. A distributed 
network of regions across prefrontal cortex encoded key features of the sampled information 
at the time it was presented. We propose that MFC is an important controller of the extent 
to which information is gathered before committing to an economic choice. This role may 
explain why MFC activity has been associated with evidence accumulation in previous studies, 
in which information sampling was an implicit rather than explicit feature of the decision. 
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Decisions great and small – from food choices in a supermarket (Gidlöf et al., 2013) to 1 
selecting the next President (Nadeau et al., 2008) – are determined by the information that 2 
the decision-maker samples before they commit to a choice. Since the 1970s, cognitive 3 
psychologists have developed ways to determine how participants decide to sample 4 
information as a decision unfolds (Newell & Simon, 1972; Payne, 1976), which has led to a 5 
rich understanding of the role of information sampling in economic choice (Bettman et al., 6 
1998; Hunt et al., 2016; Kobayashi et al., 2019; Krajbich et al., 2010; Navarro et al., 2016; 7 
Stewart et al., 2016). In such decisions, stimulus evaluation can influence subsequent 8 
information sampling, and vice versa. For example, attention to choice alternatives amplifies 9 
the value of the attended alternative (Smith & Krajbich, 2019), but a subjects’ currently 10 
preferred option also guides which information they sample next (Hunt et al., 2016; Shimojo 11 
et al., 2003). But perhaps the most pervasive effect of the value of choice alternatives on 12 
information sampling is that more difficult decisions take longer, providing more time for the 13 
agent to acquire information about the competing alternatives (Busemeyer & Townsend, 14 
1993; Hunt et al., 2012; Jamieson & Petrusic, 1977; Milosavljevic et al., 2010). 15 
 16 
Despite our rich understanding of the role of information sampling in economic choice, most 17 
studies of its neural basis have focused around simultaneously or subsequently presented 18 
choice items, without placing information sampling under the participant’s control (Gottlieb 19 
& Oudeyer, 2018). As a consequence, although neural mechanisms supporting information 20 
sampling are increasingly understood (Bisley & Goldberg, 2010; Blanchard et al., 2015; Horan 21 
et al., 2019; Stoll et al., 2016; Thompson & Bichot, 2005; White et al., 2019), much less is 22 
known about how future economic choices are guided by it. Nevertheless, accumulator 23 
frameworks often used to model economic choice in tasks where participants decide when 24 
to make a choice and terminate the trial themselves, tacitly acknowledge that decisions with 25 
longer reaction times are those in which more information is sampled. For example, 26 
perceptual and economic choice are often described using a drift diffusion model (DDM) of 27 
two-alternative forced choice, in which evidence is accumulated over time and integrated 28 
until one of two response boundaries is reached (Krajbich et al., 2010; Ratcliff & McKoon, 29 
2008; Usher & McClelland, 2001). Implicit in the DDM, and other accumulator models of 30 
decision-making, are sequential choices of the agent to sample more information. If the 31 
bound is not yet reached, the agent continues to sample further information either from the 32 
environment or from memory (Shadlen & Shohamy, 2016).  33 
 34 
Neural implementations of the DDM or other accumulator models have been used to identify 35 
brain networks that show similar trial-by-trial changes in aggregate activity as the model, and 36 
therefore could be evidence accumulators guiding choice. However, it is also possible that the 37 
trial-by-trial aggregate accumulator fluctuations may reflect greater information sampling on 38 
these trials. A region of medial frontal cortex (MFC) that encompasses the dorsal anterior 39 
cingulate cortex (dACC) and the adjacent pre-supplementary motor area (preSMA) has been 40 
identified as correlating with aggregate accumulator activity in a number of human decision-41 
making studies using blood oxygen level dependent (BOLD) fMRI (Gluth et al., 2012; Hare et 42 
al., 2011; Pisauro et al., 2017; Rodriguez et al., 2015; Venkatraman et al., 2009; Zhang et al., 43 
2012). Typically, aggregate accumulator activity is greatest on trials where choice difficulty 44 
(i.e. inverse value difference between alternatives) is highest. Yet because none of these 45 
studies explicitly measured information sampling on a trial-by-trial basis, it is unclear which 46 
of these two accounts – choice difficulty or information sampling –  better explains BOLD 47 
responses in these areas (although importantly they are not mutually exclusive). Choice 48 
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difficulty itself has also previously been associated with activity in MFC BOLD fMRI signal 49 
(Grinband et al., 2006; Pochon et al., 2008; Shenhav et al., 2014), as have reaction times in 50 
decision tasks (Thielscher & Pessoa, 2007). Yet on the other hand, this area has also been 51 
studied in the context of the exploitation-exploration dilemma, where MFC activity is linked 52 
to decisions to sample more information or explore new alternatives (Badre et al., 2012; 53 
Blanchard & Gershman, 2018; Boorman et al., 2009; Daw et al., 2006; Domenech et al., 2020; 54 
B. Y. Hayden et al., 2009; Kolling et al., 2012). 55 
 56 
Here, we used BOLD fMRI to investigate the neural basis of information sampling in economic 57 
choice, by allowing participants to actively sample information in a multi-step decision task.  58 
Our experimental paradigm mirrors equivalent recent paradigms used in non-human 59 
primates (Hunt et al., 2018) and a large-scale human behavioural study (Hunt et al., 2016). As 60 
expected, subjects sampled more information when decisions were more difficult. A broad 61 
network of brain regions signalled the value of the presented cues, as indexed using 62 
representational similarity analysis (Hunt et al., 2018). When participants were first able to 63 
make a choice, fMRI signal within MFC correlated with the difficulty of the decision. Crucially, 64 
this effect was significantly reduced by including a co-regressor indicating whether the subject 65 
sampled further information prior to choice. Activity in MFC (and bilateral intraparietal sulcus) 66 
was instead explained by the decision to sample further information. 67 
 68 
 69 

Results 70 
 71 

30 healthy human participants (aged 18-50) performed an information gathering and 72 
economic choice task inside the MRI scanner (Figure 1A). In the task, they were asked to 73 
choose between two pairs of cues, where the pair of cues on the left were one choice option 74 
and the pair on the right another. Each pair consisted of a probability and a magnitude cue. 75 
The reward associated with an option was the number of points represented by the 76 
magnitude cue awarded probabilistically in accordance with the probability cue. The cues 77 
were pictures of faces and houses and the magnitude or probability associated with them was 78 
learned by the participants in a behavioural session that took place before the main 79 
experiment (Figure 1B). ‘Optimal’ behaviour in the task (maximizing long-run expected 80 
reward) would be to choose the option with the higher expected value (=reward probability 81 
* magnitude). 82 
 83 
Crucially, each trial started with the four cues being hidden. Participants were initially shown 84 
two of the hidden cues sequentially in a pseudorandom order determined by the 85 
experimenter. These could either be two cues from the same option (‘option trials’, 50% of 86 
trials) or two cues from different options representing the same attribute (probability or 87 
magnitude; ‘attribute trials’, 50% of trials). After these first two cues had been viewed, 88 
participants could choose whether to sample the remaining hidden cues by pressing the 89 
corresponding buttons and paying a small number of points (-3 points to sample the third 90 
cue, -6 points to sample the fourth cue). Alternatively, participants could forgo the 91 
opportunity to sample further information and instead make a choice between the two 92 
options based on the information sampled thus far. Subjects then received feedback on how 93 
many points they earned that trial, although in order to decouple this haemodynamic 94 
response from that of the decision onset, feedback was only delivered on half of all trials  95 
(Guitart-Masip et al., 2011).  96 
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 97 
Both participants’ eventual choices, and their propensity to sample more information prior 98 
to choice, depended upon the values associated with the first two presented cues. In attribute 99 
trials, their choices were a function of the difference in value between the left and right cues 100 
(t(29)=10.79, p<0.001; Figure 1C), whereas in option trials their choices depended upon the 101 
value of the option relative to the mean expected value (t(29)=15.88, p<0.001; Figure 1D). 102 
Importantly, participants’ decision to sample a third piece of information also depended upon 103 
these cue values, such that the more difficult the decision, the more information was sampled 104 
(t(29)=-2.11, p=0.04 on attribute trials; t(29)=-7.20, p<0.001 on option trials; Figure 1C-D). In 105 
attribute trials, the direction of this sample tended to be biased towards the option that 106 
currently had the highest value (Figures S1-2), a bias also observed in our previous monkey 107 
(Hunt et al., 2018) and large-scale human behavioural studies (Hunt et al., 2016). 108 
 109 
We first performed a whole-brain searchlight representational similarity analysis (RSA), using 110 
templates representing several features of the task at the time of presentation of the first cue 111 
(Figure 2). At each 100-voxel searchlight sphere we regressed the templates onto the RSA 112 
matrix of that location to find the regions where brain activity showed a similar 113 
representation. Several of these templates were the same as those used in our previous study 114 
using single unit recording in macaques (Hunt et al., 2018). First, as a positive control for the 115 
success of our searchlight RSA pipeline, we included a face/house template which 116 
represented which category a cue belonged to (Figure 2A). Replicating numerous RSA results 117 
in the prior literature (Dima et al., 2018; Kriegeskorte et al., 2008), this produced a strong 118 
correlation with visual and inferior temporal cortex (peak MNI coordinates at [31, -61, -9] and 119 
peak Z=12.37, p<0.001, Figure 2C). Notably, these results were robust and replicable even at 120 
the level of individual participants (Figure S3). The next template identified regions the 121 
multivariate activity of which distinguished between whether the currently presented cue 122 
was on the left or right hand side of the screen (Figure 2C). As expected, this was strongly 123 
represented in primary visual cortex (peak MNI coordinates at [-6, -85, 4] and peak Z=11.28, 124 
p<0.001, Figure 2D). Surprisingly, however, we did not find activation in frontal eye fields or 125 
dorsolateral prefrontal cortex, despite this pattern clearly being represented in dlPFC in our 126 
previous single-unit data (Hunt et al., 2018). 127 
 128 
To investigate the neural correlates of the value-related features of the task, we included 129 
‘attended value’ and ‘accept/reject’ templates, mirroring those in our previous study (Hunt 130 
et al., 2018). The ‘attended value’ template simply represents the value of the first cue, 131 
ranked from 1-5 and then normalized, such that low-value cues are predicted to be similar to 132 
other low-value cues, and high-value cues are predicted be similar to other high-value cues 133 
(Figure 2E). The template assumes that magnitude and probability cues were treated the 134 
same in terms of how valuable they were, because to calculate the expected value of an 135 
option participants had to collapse across the two cues, and because magnitude and 136 
probability cues were found to be similarly encoded in macaque OFC single-cell recordings 137 
(Hunt et al., 2018). The ‘accept/reject’ template also represents the value of the first cue but 138 
binarises this into ‘above average’ or ‘below average’ in value (or ‘neutral’, for the mid-value 139 
cue; Figure 2G). In our single-unit data, this correlated with activity in dACC (Hunt et al., 2018). 140 
In our fMRI data, we found that both the ‘attended value’ and ‘accept/reject’ templates 141 
correlated with the activity in an extensive network within frontal and parietal cortex, 142 
including ventromedial PFC (vmPFC; peak at MNI coordinates [2, 50, -1] and peak Z=4.36, 143 
p<0.001 for ‘attended value’ template; peak at MNI coordinates [2, 51, 1] and peak Z=3.90, 144 
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p=0.006 for ‘accept/reject’ template), dACC (peak at MNI coordinates [0, 37, 29] and peak 145 
Z=4.80, p=0.003 for ‘attended value’ template; peak at MNI coordinates [0, 35, 31] and peak 146 
Z=5.91, p=0.006 for ‘accept/reject’ template) and posterior parietal cortex (peak at MNI 147 
coordinates [52,-49,51] and peak Z=5.91, p<0.001 for ‘attended value’ template; peak at MNI 148 
coordinates [52, -49, 51] and peak Z=5,14, p=0.002 for ‘accept/reject’ template; Figure 2E-H). 149 
As expected, this network corresponds well with areas previously identified in meta-analyses 150 
of subjective value encoding using fMRI (Bartra et al., 2013; Clithero & Rangel, 2014). 151 
 152 
We then investigated the neural correlates of the decision to sample further information, 153 
which first occurred at the time of presentation of the second cue, and whether this might 154 
explain activations that would otherwise be described as encoding choice difficulty. To test 155 
this, we used a mass univariate analysis, as the task comprised too many conditions to 156 
perform RSA at the time of presentation of the second cue. In an initial analysis, we included 157 
only the values of the different cues as regressors, and found a subregion of MFC that was 158 
negatively related to the difference between the values of the chosen and unchosen options, 159 
which we will refer to as ‘inverse value difference’ (Figure 3A, peak at MNI coordinates [-2, 160 
14, 52] and peak Z=5.37; see uploaded maps at neurovault.org for unthresholded Z-statistic 161 
maps for this and all other analyses). In other words, activity in this region was greater for 162 
more difficult decisions, replicating a large number of previous findings in the economic 163 
choice literature (Grinband et al., 2006; Pochon et al., 2008; Shenhav et al., 2014). 164 
 165 
Crucially, this model did not yet account for whether participants chose to sample further 166 
information before committing to one of the options. In a further regression model, we 167 
included a binary information sampling regressor describing whether or not participants 168 
chose to sample more information on a given trial. As expected from the relationship 169 
between difficulty and information sampling (Figure 1C/D), this regressor had some 170 
correlation with the regressor encoding value difference (average correlation of r=-0.3; Figure 171 
S5; we note that 5 participants were excluded from this analysis, as they sampled additional 172 
information before choosing less than once per block). We found that the main effect of 173 
choice difficulty in MFC disappeared when the information sampling predictor was included, 174 
and this was not a consequence of the exclusion of the 5 participants who rarely sampled 175 
further information (Figure S8). Instead a main effect of information sampling was seen in a 176 
small section of MFC, which was more active on trials where subjects decided to sample 177 
further information (Figure 3B, Figure 4, peak activation at MNI coordinates [-6, 10, 46] and 178 
peak Z=4.04). Consistent with recent reports that highlight the role of parietal cortex in 179 
reducing uncertainty about future rewards (Horan et al., 2019), we also found bilateral 180 
activation of intraparietal sulcus for this regressor (peak activation at MNI coordinates [-36, -181 
32, 42] and peak Z=5.78, Figure 3B). 182 
 183 
To further explore whether choice difficulty encoding was significantly reduced by the 184 
inclusion of the information sampling regressor, we performed a region-of-interest analysis. 185 
We focused our results on the MFC region that encoded inverse value difference (i.e. choice 186 
difficulty) in the whole brain analysis (Figure 3A), but in order to avoid circularity (Kriegeskorte 187 
et al., 2009), we used a leave-one-out procedure in which each participant’s ROI was defined 188 
by taking significant MFC voxels from a group model including all participants except them 189 
(Boorman et al., 2013). This revealed a significant reduction in the encoding of inverse value 190 
difference as a consequence of including the information sampling regressor (Figure 4B; 191 
t(23)=3.28, p=0.003), such that choice difficulty was no longer significant encoded in this 192 
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region (t(23)=1.17, p=0.26). Instead, this region of interest significantly encoded the decision 193 
to sample further information (Figure 4C; t(23)=4.17, p<0.001). 194 
 195 
Finally, we investigated encoding of belief confirmation, which was defined as the extent to 196 
which the value of the second cue confirmed the belief formed after presentation of the first 197 
cue. In our single unit study, we found that belief confirmation was reliably encoded in dACC 198 
(Hunt et al., 2018), and similarly in the present study we found fMRI activity in a more anterior 199 
portion of MFC encoded belief confirmation on ‘option’ trials (Figure S4; peak Z=4.81 at peak 200 
at MNI coordinates [8, 34, 8]). However, this effect did not survive whole-brain correction in 201 
the reduced sample of 24 participants who regularly sampled more information before 202 
choosing; we therefore did not investigate further whether this regressor was significantly 203 
reduced by the inclusion of information sampling as a co-regressor.  204 
 205 
 206 

Discussion 207 
Here we have shown that in an information sampling and economic choice task, MFC activity 208 
encodes whether a subject will sample further information before committing to a decision. 209 
We moreover found that this effect could explain away the encoding of choice difficulty 210 
(inverse value difference) in MFC, a signal that has been commonly observed in many 211 
previous studies of economic choice (Grinband et al., 2006; Pochon et al., 2008; Shenhav et 212 
al., 2014). Our findings should not be interpreted as suggesting that difficulty is not encoded 213 
in MFC, but instead that difficulty be a fundamental determinant of whether further 214 
information is sampled prior to choice. This forms a logical extension of previous work on the 215 
role of MFC as an evidence accumulator (Gluth et al., 2012; Hare et al., 2011; Pisauro et al., 216 
2017; Rodriguez et al., 2015; Venkatraman et al., 2009; Zhang et al., 2012), as evidence 217 
accumulation involves an implicit decision to sample further information when a decision 218 
bound has not yet been reached (Shadlen & Shohamy, 2016). An advantage of the current 219 
information gathering paradigm is that it allowed us to study the relationship between MFC 220 
signals and subsequent behavior; most paradigms in the field are much simpler and do not 221 
allow for this type of analysis.  222 
 223 
Our findings are consistent with previous studies that propose a role for MFC in guiding 224 
exploratory behavior (Badre et al., 2012; Boorman et al., 2009; Daw et al., 2006; Domenech 225 
et al., 2020; B. Y. Hayden et al., 2009; Kolling et al., 2012). For example, one recent study by 226 
Blanchard and Gershman (2018) contrasted trials in which participants decided to place a bet, 227 
versus trials where they decided to obtain further information about the value of that bet. 228 
Activity in MFC and bilateral insula was significantly greater on observe trials than on bet trials 229 
(we also found subthreshold activity in insula predictive of information sampling, see Figure 230 
S9 and maps on neurovault.org). Similarly, a single unit recording study by White et al. (2019) 231 
identified dACC as the leading node in a network of areas that encoded gaze shifts to resolve 232 
uncertainty about upcoming rewards, and further studies have shown that activity in this area 233 
predicts ‘checking’ behaviours when monkeys are close to receiving a reward (Stoll et al., 234 
2016). On the other hand, it has also been suggested that dACC is particularly active when 235 
participants switch away from a default behavior (E. D. Boorman et al., 2013; Kolling et al., 236 
2016). It is possible that we find mediofrontal activity predictive of information sampling 237 
because in our study not sampling additional information could be considered a default 238 
behavior, given that participants commit to a choice straight away more often than they 239 
decide to sample more cues (Figure  1C/D). 240 
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 241 
More broadly, different subregions of MFC have been associated with diverse parameters in 242 
different paradigms (Kolling et al., 2016), whether it is sampling value (Stoll et al., 2016), 243 
conflict (Botvinick et al., 1999), choice difficulty (Grinband et al., 2006; Pochon et al., 2008; 244 
Shenhav et al., 2014), or belief (dis)confirmation (Boorman et al., 2013; Hunt et al., 2018; 245 
Quilodran et al., 2008; Wessel et al., 2012). It is notable that all of these task parameters may 246 
affect the degree to which additional information sampling is required before committing to 247 
a choice. 248 
 249 
Our behavioural results also indicate that humans are more likely to sample information from 250 
an option that they believe is good (Figure S1-2), consistent with our previous behavioural 251 
findings (Hunt et al., 2016). We hypothesize that MFC may therefore drive information 252 
sampling through active hypothesis testing (Markant & Gureckis, 2012). In other words, 253 
rather than sampling information from all available alternatives equally, the agent has a 254 
hypothesis that one of the alternatives is best, continues to sample from it and only moves to 255 
another alternative when the first alternative turns out to be a bad option. This is consistent 256 
with the presence of a ‘belief confirmation’ signal in ACC, which we find here (Figure S4) and 257 
also found in our previous single unit study (Hunt et al., 2018). It is also consistent with recent 258 
behavioural findings in perceptual decision-making (Talluri et al., 2018), and the recent 259 
suggestion that gaze affects the integration of goal-relevant evidence rather than value in 260 
economic choice (Sepulveda et al., 2020). Such an account of economic choice has recently 261 
been proposed as particularly ecologically valid in decisions containing multiple options 262 
(Hayden, 2018). More detailed testing of this hypothesis will require paradigms in which 263 
multiple options are available for choice, and where information sampling and choice are 264 
explicitly dissociated from one another.  265 
 266 
We were able to identify brain networks encoding both sensory- and value-related aspects of 267 
the task using RSA, some of which encompassed areas in PFC (Figure 2) whose value 268 
responses have previously been shown using multivariate pattern analysis (Kahnt et al., 269 
2010). A similar region was found to encode continuous and categorial (‘below’ or ‘above’ 270 
average) attended value. We tested for the presence of these two regressors despite their 271 
correlation because in the macaque single-cell data from Hunt et al. (2018), continuous value 272 
was found to be mostly encoded in OFC, while categorical value was encoded in ACC. It is 273 
possible that we were not sensitive to detect a similar dissociation here due to the lower 274 
signal-to-noise in human fMRI data compared to that in single-cell data. In the same analysis, 275 
we also observed value-related activity in bilateral parietal cortex, which is consistent with a 276 
similar RSA regressor used to describe parietal cortex EEG responses to numerical magnitude 277 
in an economic choice task (Luyckx et al., 2019). 278 
 279 
The clear correlation between templates describing the visual properties of cues in the task 280 
and visual/inferotemporal cortical activity replicates earlier work showing that RSA 281 
distinguishes objects of different categories in these areas in human fMRI data (Dima et al., 282 
2018; Kriegeskorte et al., 2008; O’Toole et al., 2005). It has previously been suggested that 283 
such an approach can be used to study representations across species, found using different 284 
types of data (Kriegeskorte et al., 2008). We hypothesized that our task might allow us to 285 
perform a similar cross-species analysis in order to identify functional homologues of the PFC 286 
subregions studied with single unit recordings in Hunt et al. (2018). We did not clearly identify 287 
the same triple dissociation that was seen in our previous study (Figure S6, S7). It still remains 288 
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unclear whether RSA really probes fine-grained spatial information that is similar to that 289 
identified by single neuron data, or whether it is primarily driven by the same macroscopic 290 
signals that can also be isolated in mass univariate analyses (Op de Beeck, 2010). It is possible 291 
that the intermixed positive and negative coding that supported the successful RSA in Hunt 292 
et al. (2018) is not observable at the voxel level in human fMRI. This may also explain why 293 
decoding accuracies in multivariate pattern analyses are invariably far lower in prefrontal 294 
cortex than in occipital and temporal cortices (Bhandari et al., 2018).  295 
 296 
In summary, we have shown that MFC activity in economic choice predicts subsequent 297 
information sampling. We replicated previous studies showing that MFC activity in different 298 
subregions is related to choice difficulty, but critically this effect was explained away by the 299 
inclusion of information sampling as a co-regressor. This suggests that the role of MFC may 300 
extend beyond that of evidence accumulation, and implies an important role for MFC in 301 
guiding adaptive information sampling during economic choice. 302 
 303 
 304 

Methods 305 
30 healthy human participants (aged 18-50) attended two study sessions: one behavioral 306 
training session (1hr) and one fMRI session (2hr 15min). One participant was excluded from 307 
the representational similarity analyses as their fMRI study session was ended prematurely, 308 
meaning we did not obtain enough data from this participant to appropriately balance across 309 
different conditions. In the behavioral session, participants learned the meanings of ten 310 
stimuli: five faces and five houses. Five of these stimuli represented a reward probability 311 
(10%, 30%, 50%, 70%, or 90%) and the other five a reward magnitude (10, 30, 50, 70, or 90 312 
points). We ensured that whether the cues were faces or houses was orthogonal to cue values 313 
by pseudo-randomizing the meaning of each cue for each participant. Specifically, there were 314 
always 3 face probability cues and 2 house probability cues (and similarly for magnitude), or 315 
vice versa, and these were interspersed such that faces or houses could not be associated 316 
with generally low or high value (Figure 1B). After learning the cues, participants were trained 317 
on the main task.  318 
 319 
In the main task, participants were asked to choose between two pairs of cues (Fig. 1A). Each 320 
pair consisted of a probability and a magnitude cue. The reward associated with that option 321 
was the number of points represented by the magnitude cue awarded probabilistically in 322 
accordance with the probability cue. ‘Optimal’ behavior in the task (maximizing long-run 323 
expected reward) would be to choose the side with the higher expected value (reward 324 
probability multiplied by reward magnitude). However, a trial started with the four cues being 325 
hidden (presented as grey squares), where the pair of cues on the left was one option and 326 
the pair on the right another. Participants were initially shown two different cues 327 
sequentially, the selection of which was pre-determined by the experimenter in order to 328 
balance cue presentation for representational similarity analyses. These could either be two 329 
cues from the same option (‘option trials’, 50% of trials) or two cues from different options 330 
representing the same attribute (probability or magnitude; ‘attribute trials’, 50% of trials). 331 
Note that the location of each attribute was counterbalanced to be the top or bottom cue, 332 
but that this was consistent between the two options within a trial (eg. if the top cue of the 333 
left option was the probability cue, the top cue of the right option was also the probability 334 
cue). The location and identity of the first cue were counterbalanced throughout each block. 335 
The reason the cues were shown sequentially is because this enabled us to study brain activity 336 
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in response to each cue separately. At the second cue, we can also study choice difficulty and 337 
belief confirmation by looking at how the neural response depends on the value difference 338 
between the options and on how well the evidence provided by the second cue conforms to 339 
that provided by the first cue. Each cue presentation lasted 2s and was followed by a 0-4s 340 
jittered interval during which all the cues were hidden again. 341 
 342 
After this, participants were given the opportunity to view the remaining two hidden cues by 343 
pressing the corresponding buttons. However, participants had to pay points to do this: 3 344 
points to see a third cue, and another 6 points to see the fourth and final cue. As such, 345 
participants had to judge how useful the additional information provided by the last two 346 
hidden cues might be in ensuring they choose the option with highest expected value. In a 347 
pilot study, it was found that these costs typically led participants to sample further 348 
information on a subset of trials (cf. Fig. 1C/D; although we note that the propensity to sample 349 
further information still varied across individuals). Note that participants could not choose to 350 
see the first two cues again. When participants finished sampling the additional cues, or 351 
decided they did not want to sample further cues at all, they made a choice between the two 352 
options. On half of all trials, subjects received feedback on how many points they earned that 353 
trial; feedback was only revealed on 50% of trials, as this made sure stimulus-locked value-354 
related signals and feedback-locked reward-related signals were decorrelated in the design 355 
matrix. Inter-trial interval was jittered and between 3-7s. Participants were only invited to 356 
take part in the fMRI part of the experiment if they chose the highest valued option on 70% 357 
of trials in the last practice block of the main task. 358 
 359 
In the fMRI session, participants first received further training on the task by doing two blocks 360 
of 40 trials each outside the scanner. Inside the scanner, participants did 10 practice trials and 361 
five blocks of the main task (a total of 200 trials). Participants received £1 for every 300 points 362 
earned in the task, in addition to a £20 show-up fee for coming to both study sessions. A 363 
counter in the right bottom corner of the screen kept track of the money earned up to that 364 
point throughout the task. As such, participants earned an average of £41 overall. This 365 
experiment was realised using Cogent 2000 developed by the Cogent 2000 team at the FIL 366 
and the ICN and Cogent Graphics developed by John Romaya at the LON at the Wellcome 367 
Department of Imaging Neuroscience. 368 
 369 
fMRI Data Collection 370 
Whole-brain fMRI measurements were made using a Siemens Prisma 3T scanner with a 2 x 2 371 
x 2mm voxel size, repetition time (TR) = 1.235s, echo time (TE) = 20ms, flip angle = 65° with 372 
an axial orientation angled to AC-PC using a 64-channel head coil. The sequence used was 373 
MB3 PAT2. Participants performed five blocks of the main task inside the scanner with short 374 
breaks in between. For each new block a new run was initiated. Given that the task was not 375 
speeded, the runs were of variable length and so were the number of volumes collected per 376 
run. The average number of volumes collected per participant was 2587. T1-weighted 377 
structural images were obtained using an MPRAGE sequence with 1 x 1 x 1mm voxel size, on 378 
a 174x192x192 grid, TE = 3.97ms, TR = 1.9s. A field map with dual echo-time images was also 379 
acquired (TE=7.38ms, whole-brain coverage, 2.4 x 2.4 x 2.4 mm voxel size). 380 
 381 
 382 
 383 
 384 
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fMRI Data Analysis 385 
fMRI analysis was carried out using the FMRIB Software Library (FSL), and custom-written RSA 386 
scripts in MATLAB that built upon the Representational Similarity Analysis toolbox (Nili et al., 387 
2014). 388 
 389 
The pre-processing performed on the data was the following: motion correction using 390 
MCFLIRT (Jenkinson et al., 2002); non-brain removal using BET (Smith, 2002); spatial 391 
smoothing using a Gaussian kernel of FWHM 5mm; grand-mean intensity normalisation of 392 
the entire 4D dataset by a single multiplicative factor; highpass temporal filtering (Gaussian-393 
weighted least-squares straight line fitting, with sigma=50.0s). Registration to high resolution 394 
structural and/or standard space images was carried out using FLIRT (Jenkinson et al., 2002; 395 
Jenkinson & Smith, 2001). 396 
 397 
Behavioral data analysis 398 
We studied the effects of cue value on choice and sampling decisions using single-subject 399 
logistic regressions followed by one-sample t-tests on the single-subject regression 400 
coefficients (Figures 1C/D). Specifically, we performed two logistic regressions on attribute 401 
trials where the independent variable was the value rank difference between the left and 402 
right presented cues and the dependent variable was whether or not the left option was 403 
chosen or whether a third cue was sampled, respectively. Similarly, on option trials two 404 
logistic regressions were executed where the independent variable was the summed cue 405 
ranks of the two presented cues minus the mean value rank of an option and the dependent 406 
variable was whether or not the fully revealed option was chosen or whether a third cue was 407 
sampled, respectively. 408 
 409 
Representational Similarity Analysis (RSA) 410 
We first estimated a whole-brain general linear model (GLM) with regressors encoding onsets 411 
of the first two cues, cue category (face or house) and what side of the screen the cue 412 
appeared on. This GLM was executed on the spatially smoothed data. Then, we performed 413 
searchlight RSA, meaning RSA is performed for a 100 voxel sphere of voxels, centered around 414 
each voxel in the brain (Nili et al., 2014). These were then regressed against model 415 
representational similarity matrices (Figure 2) to find areas of the brain the activity of which 416 
showed similar representations. We then performed a statistical test at each voxel and 417 
significant clusters were identified using threshold-free cluster enhancement (TFCE; Smith & 418 
Nichols, 2009). The resulting p-values were family-wise error rate controlled at a threshold of 419 
p<0.05. This same method was used with representational similarity matrices obtained from 420 
Hunt et al. (2018) to investigate similarities between representations in monkey and human 421 
prefrontal cortex, although here we present unthresholded statistical maps as no clusters 422 
survived multiple comparisons correction in PFC. 423 
 424 
Mass Univariate Analysis 425 
Two GLMs were fit to the individual subject data, one including and one excluding regressors 426 
describing information sampling behavior. We also included regressors describing onset of 427 
the first two cues, cue values (separated into cues where the associated option was eventually 428 
chosen or unchosen), side of cue presentation, trial type (option or attribute trial), whether 429 
feedback was presented, and if so, how much reward the participant received on the 430 
preceding trial. Lastly, our model included a regressor that reflected belief confirmation, 431 
encoded as an index defining how much the second cue should change the agent’s belief 432 
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about what the best option is (Figure S4). We used contrasts of parameter estimates to find 433 
regions that encoded the inverse value difference between the revealed cues (i.e. unchosen 434 
minus chosen value, or choice difficulty). All regressors were modelled as 2s boxcar functions, 435 
to match the duration for which the cue was presented. We report mass univariate  results at 436 
the group-level using whole-brain family wise error (FWE) corrected statistical significance 437 
and a cluster significance threshold of Z>2.3 and p<0.05. Note that similar results were 438 
obtained using TFCE (Smith & Nichols, 2009). 439 
 440 
To measure how much the main effect of choice difficulty was reduced by adding the 441 
information sampling regressor (Fig. 4), without being biased by the initial GLM, we used a 442 
leave-one-out procedure. BOLD activity was extracted for each participant from the choice 443 
difficulty (in both GLMs) and information sampling contrasts using an ROI defined by a group 444 
model excluding that participant. The ROI was defined as any positively significant clusters 445 
(Z>3.1, p<0.05, corrected) for the contrast of inverse value difference found within a large 446 
mediofrontal mask. We then performed a one-sample t-test on the extracted parameter 447 
estimates for the inverse value difference contrast, both including or excluding information 448 
sampling behaviour as a co-regressor.  449 
 450 
 451 
 452 
 453 
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Figures and legends 

 
 
Figure 1. Experimental paradigm and participant behaviour. (A) Task structure. The task starts with all four cues 
being hidden. Two cues are shown sequentially. After this, participants can choose to sample more cues or make 
a choice between the two options. (B) Example picture set and their associated magnitude and probability 
amounts. (A,B) Note that the pictures of faces used in these panels do not belong to individuals and were 
generated. (C, D) Participants effectively use the cue values to make correct choices and to guide whether more 
cues need to be sampled. (C) In attribute trials, participants are more likely to choose the left option, the larger 
the value difference is between the left and right observed cues. Participants are more likely to sample additional 
cues the closer this value difference is to 0. These psychometric curves are plotting the probability of choosing 
the left option and sampling a third cue as a function of the difference in value rank between the two revealed 
cues. (D) In option trials, participants are more likely to choose the option of which the cues have been revealed, 
the higher the sum of these presented cue values is compared to the mean value of an option. Participants are 
more likely to sample additional cues the closer this value sum is to the mean. These psychometric curves are 
plotting the probability of choosing the option the cues of which were revealed and sampling a third cue as a 
function of the sum of the ranked values of the revealed cues subtracting the mean cue rank of an option. 
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Figure 2. Whole-brain searchlight analysis reveals representations of several features of the task. (A,C,E,G) RSA 
templates for spatial attention, face/house category, attended value, and belief confirmation. (B) Cue category 
(face or house) is represented in visual and inferior temporal cortex. (D) Spatial attention is represented in visual 
cortex. (E-H) We find activations for attended value and belief confirmation in an elaborate network including 
vmPFC, ACC, and posterior parietal cortex. All parametric maps are depicting p-values derived from using 
threshold-free cluster enhancement (TFCE) on GLM z-score maps.  
 
 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 25, 2020. ; https://doi.org/10.1101/2020.11.24.395814doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.24.395814
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23 

 
 

Figure 3. There is a main effect of inverse value difference (choice difficulty) at the time of presentation of cue 
2 in MFC, which disappears when subsequent information sampling is included as a regressor. (A) Linear positive 
effect of inverse value difference in MFC on option trials in 30 subjects. (B) There is no effect of inverse value 
difference in MFC when information sampling is included as a regressor, while there is a linear positive effect of 
information sampling in MFC in 24 subjects. All parametric maps are cluster-corrected and thresholded at z>3.1. 
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Figure 4.  When information sampling is included as a co-regressor here is a significant decrease in the main 
effect of inverse value difference (in an MFC region of interest equivalent to the region defined in Figure 3A, 
defined by a leave-one-out procedure). (A) MFC region of interest derived from mass univariate analysis 
including all 30 subjects. (B) Effect of inverse value difference in MFC in GLMs with and without the information 
sampling co-regressor in 24 subjects. (C) Effect of information sampling in the same brain region. A stronger 
BOLD signal was found in this region on trials where participants would subsequently decide to sample more 
information before committing to a choice compared to trials where they made a choice straight away.  
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Supplemental material 
 

 
 
Figure S1. Subsequent information sampling depends on the values of the first two cues. (A) Number of 
additional cues sampled on the same side as a presented cue as a function of that cue’s value. Participants are 
more likely to sample another cue from an option if the first cue from that option was of high value. (B) Number 
of additional cues sampled on opposite side from the presented cue as a function of that cue’s value. Participants 
are more likely to sample additional cues if the values of the first two cues were of average value. 
 
 

 
 
Figure S2. Participants were more likely to sample the remaining hidden cue from the option with the highest 
revealed cue value in attribute trials. This psychometric curve plots the probability of sampling cues from the 
left option as a function of the difference in value rank between the two revealed cues and is only plotting trials 
on which participants sampled additional cues. 
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Figure S3. Representational 
dissimilarity matrices of temporal 
occipital fusiform gyrus of several 
example subjects sorted by 
face/house category and 
left/right presentation. It can be 
seen that a clear representation 
of category is present in almost 
all participants. 
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Figure S4. A main effect of belief confirmation was also found in MFC, but this effect disappeared when using 
the reduced sample of 24 participants. (A) Linear negative effect of belief confirmation in MFC on option trials 
in 30 subjects. Parametric maps are cluster-corrected and thresholded at z<-3.1. (B) Encoding of belief 
confirmation as a function of the ranks of the two presented cues. 
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Figure S5. Correlation matrix of value difference, belief confirmation and sampling predictors in mass univariate 
analysis in 24 subjects.  
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Figure S6. To further investigate RSA as a method to link functional data across species (Kriegeskorte, 2008), we 
performed a whole-brain searchlight on the human fMRI data using (A) RSA matrices derived directly from the 
single unit recordings measured in three relevant prefrontal regions in macaques, instead of using model RSA 
matrices as in Fig. 2 (Hunt et al., 2018). (B) No significant whole-brain cluster-corrected correlations were found 
within human prefrontal cortex, though subthreshold activations were found in human insula correlated with 
the macaque ACC matrix, and human ventromedial prefrontal cortex (vmPFC) correlated with the macaque 
orbitofrontal cortex (OFC) matrix. As expected from the result in Figure 2C/D, human visual cortex was found to 
be related to the macaque dorsolateral prefrontal cortex (dlPFC) matrix, which strongly reflected the 
participant’s current locus of spatial attention. All parametric maps are uncorrected and thresholded at z>2.3.  
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Figure S7. RSA in anatomically defined regions of interest for human orbitofrontal cortex (OFC), dorsolateral 
prefrontal cortex (dlPFC), and anterior cingulate cortex (ACC) reveals considerably less task-related structure in 
the representational similarity matrices than those derived from the macaque single-cell data. The ROIs in 
human PFC are based on connectivity parcellations of human PFC (Sallet et al., 2013; Neubert et al., 2015) and 
are human homologues of the prefrontal regions studied in Hunt et al. (2018). The matrices are sorted by the 
10 possible stimulus identities (five probability cues and five magnitude cues sorted by ranked value) and which 
side they were presented on. The color of each pixel in the matrix refers to the correlation r between activity in 
the two conditions across all voxels in the ROI mask. 
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Figure S8.  The main effect of inverse value difference at the time of presentation of cue 2 in MFC does not 
disappear when 5 participants are excluded from sampling. There is a linear positive effect of inverse value 
difference in MFC on option trials in 24 subjects. Parametric maps are cluster-corrected and thresholded at 
z>2.3. 
 
 
 
 

 
 
Figure S9. Subthreshold activity found in insula predictive of information sampling in a mass univariate analysis. 
Parametric map is uncorrected and thresholded at Z>3.1. 
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