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ScienceDirect
Recently, neuroscientists have become increasingly interested

in studying the interactions between information sampling and

choice and the mechanisms underlying these. In machine

learning, introducing intrinsic rewards for exploration has been

found to greatly improve artificial agents’ performance on ‘hard

exploration’ problems. There is evidence that humans are

intrinsically driven to sample both information that has no direct

impact on reward outcome as well as information that reduces

uncertainty on upcoming decisions. Recent findings from

studies using a range of information sampling tasks suggest a

functional dissociation between more posterior and anterior

regions of prefrontal cortex (PFC). Specifically, pre-

supplementary motor area (pre-SMA) and dorsal anterior

cingulate cortex (dACC) are involved in decisions to sample

more information to guide upcoming decisions, whereas the

more anterior ventromedial prefrontal cortex (vmPFC), encodes

the value of upcoming information. We argue that to effectively

study information sampling in humans, the behavioral tasks we

use must better reflect the large state space available to

humans in real life. This, however, is challenging due to the

complex model of the world humans have access to when

choosing where to sample next.
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Our decision-making is determined by the information

we gather before choosing. While much scientific work
www.sciencedirect.com 
has been done to investigate how humans decide what

information to sample at what time, we do not yet fully

understand how these sampling choices guide future

decision-making, and in turn, how past decisions affect

subsequent information sampling [1�]. Here we review

recent work aiming to better understand this: (i) through

the development of reinforcement learning algorithms

that display similar exploratory behavior to that seen in

humans; (ii) the study of human participants’ sampling

behavior using experimental designs that dissociate infor-

mation sampling from reward-maximizing choices; and

(iii) the study of the neural mechanisms underlying these

behaviors.

Information sampling by artificial agents
‘Hard exploration’ problems in machine learning are

environments in which rewards are sparse and can only

be obtained by performing a specific sequence of actions

[2]. Traditional reinforcement learning agents struggle to

obtain any reward in this type of environment, as they fail

to identify and learn the long action sequences necessary

to discover these sparse rewards. Introducing intrinsic
rewards rewards for gaining information about the envi-

ronment, that augment the externally delivered reward

signal has improved performance of these agents on such

problems, to the point where they outperform humans on

tasks with sparse rewards, such as the Atari game

‘Montezuma’s Revenge’ [3,4,5��,6–12,13��].

Are intrinsic rewards learned?
This idea of including an intrinsic reward for exploring

suggests that there may be some innate preference for

information search. It has been shown that reinforcement

learning agents can learn intrinsic rewards through expe-

rience, but that these can also be passed down to new

agents via their reward function in an evolutionary man-

ner [13��,14]. Furthermore, many findings within devel-

opmental psychology suggest younger human learners

show more exploratory behavior than older learners,

who are typically more goal-directed [15]. For this

‘explore-first/exploit-later’ strategy to be present, some

innate motivation in young agents to seek new informa-

tion is to be expected. Indeed, infants have been shown to

prefer stimuli of medium complexity [16]. This behavior

is in line with Loewenstein’s information-gap hypothesis,

which argues that curiosity is at its highest when the agent

already possesses a moderate amount of knowledge [17].
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Types of information sampling behavior
In neuroscience, ‘exploration’ is often defined as forego-

ing the current best option in order to sample information

about an alternative, in multi-alternative bandit or forag-

ing tasks [1�,18��]. However, to maximize reward effec-

tively an agent must also learn the structure of its envi-

ronment through exploration [19]. This may be a main

reason why children are highly exploratory and take

delight in pursuing seemingly arbitrary goals they have

yet to learn the full structure of their surroundings [14].

This type of ‘exploration’ is often referred to as

‘curiosity’, but is not frequently studied experimentally

in human participants [1�,20].

Recent discoveries in machine learning on hard explora-

tion problems beg the question whether humans sample

information in a similar way that is to say, by an intrinsic

motivation to seek out novelty. Recent studies have

indeed shown that both non-human primates and human

participants are willing to pay for information to reveal

information that does not affect the outcome [21�,22],
building on an established literature documenting pre-

ferences for early ‘temporal resolution of uncertainty’ in

such problems [23]. By contrast, information sampling

could also be guided in a goal-driven manner in order to

optimize future decisions [24]. Again, the goal here can

either be to identify new sources of reward or to improve

the agent’s model of the environment, but most behav-

ioral tasks used to investigate this type of information

search focus on the former [1�].
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The distinction between sampling of information that is

directly useful to guide upcoming decisions and of infor-

mation that is not, is commonly referred to as instrumen-

tal versus non-instrumental information seeking. Recent

behavioral data suggests that a combination of both non-

instrumental and instrumental factors drive human infor-

mation sampling [25,26,27�], but as of yet it is unclear

what determines how each factor is weighted during

sequential decisions to sample information. It is possible

that what is deemed as non-instrumental information

sampling in decision-making tasks, is in fact a form of

exploration to reduce uncertainty about the structure of

the environment rather than maximizing reward.

Exploitation versus exploration
One of the best-described types of information sampling

behavior is that shown in explore-exploit tasks

[18��,28,29]. In such studies, prefrontal cortex (PFC)

activity has been found to predict exploratory choices

of uncertain options (Figure 1; [18��,29,30,31��,32�,33��]).
More specifically, Trudel et al. [33��] found that prefrontal

subregions play distinct roles in resolving the

exploitation–exploration dilemma: while dorsal anterior

cingulate cortex (dACC) encoded uncertainty only when

the agent was in an exploratory phase, ventromedial

prefrontal cortex (vmPFC) encoded uncertainty through-

out the task, but the polarity of its activity changed as a

function of whether the agent was in an exploitative or

explorative phase (Figure 1b).
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ore information in exploitation-exploration tasks.

ting’ on each trial, trials in which participants chose to ‘observe’, larger

RI study [18��]. (b) In another fMRI study, dACC only encoded

), while vmPFC encoded uncertainty throughout the task (black circle),

participant was in an exploitative (left panel) or exploratory phase (right
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Prefrontal activity is associated with information sampling in tasks where sampling is explicitly separated from reward-maximizing choices. (a)

Locations of peak activity associated with information sampling in pre-SMA/dACC (purple) and vmPFC (green) in a number of recent human fMRI

studies, collapsed across the x-axis [34��,36��,39��,40��,42��,43��]. (b) An effect of inverse value difference on BOLD signal in medial frontal cortex

(MFC) is significantly reduced when including information sampling as a co-regressor in an economic choice task [34��]. (c) Macaque single-cell

activity in dACC is related to how much newly revealed information confirms a previously formed belief about which of two options to choose to

maximize reward in an economic choice task [35].
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A challenge in these tasks is that it is hard to dissociate

decisions to sample information, or ‘exploration’, from

decisions to maximize expected reward, or ‘exploitation’.

Blanchard and Gershman [18��] addressed this by sepa-

rating actions the agent can take into ‘observation’ and

‘betting’ actions and found larger dACC activity on

observation trials (Figure 1a). This still presents informa-

tion sampling and decision-making as a trade-off, though,

while in reality this trade-off may not exist as agents

continuously sample information to guide upcoming

choices.

The value of information versus choosing to
sample
Other recent studies have separated information sam-

pling from choice by giving subjects the explicit oppor-

tunity to actively sample information before making a

choice [34��,35,36��,37��]. In these tasks, prefrontal activ-

ity has again been found to be related to information

sampling [34��,35,36��,37��,38�] (Figure 2b-c). Looking

more carefully at the specific regions related to informa-

tion sampling, there again appears to be a dissociation

between activity in two regions: a more posterior and

dorsal region, including pre-supplementary motor area

(pre-SMA) and dACC, and ventromedial prefrontal cortex

(vmPFC; [34��,36��,39��,40��,41,42��,43��], Figure 2a). At

rest, these two regions show strong functional coupling

with each other, but pre-SMA/dACC are also strongly

coupled with sensorimotor regions, frontal pole, dorsal

prefrontal cortex, and insula, among others [41]. On the

other hand, vmPFC shows strong couplin with temporal

cortex, posterior cingulate, precuneus and crucially, ven-

tral striatum, which receives the strongest dopaminergic

input from reward-sensitive parts of the dopamine mid-

brain [41]. In contrast, dACC is more strongly connected

to dorsal striatum, which mostly receives inputs from

motoric parts of the dopamine midbrain [44].

This dissociation in functional coupling can be linked to

the different features of the specific behavioral tasks used

to find neural activity in these regions related to informa-

tion sampling. Generally, it seems to be the case that pre-

SMA/dACC activity is predictive of subsequent actions

by the agent to gather more information to guide an

upcoming choice [34��], while vmPFC encodes the value

of upcoming information [36��,40��,42��,43��]. For exam-

ple, Iigaya et al. [40��] found an anticipatory value signal in

vmPFC, which is the modelled value associated with the

information that a reward will be received later on

(Figure 3a-b). Similarly, Charpentier et al. [43��] found

an adjacent region is activated in response to the oppor-

tunity to receive information about future outcomes

(Figure 3c).

More evidence for such a functional dissociation between

these two regions in information sampling comes from the

long literature on novelty encoding in the dopaminergic
Current Opinion in Behavioral Sciences 2021, 41:63–70 
midbrain [46]. Recent findings elaborate on this by show-

ing that ventral striatum, which is strongly coupled with

vmPFC, itself also encodes the value of information

[36��,39��,42��,43��,47��]. In other words, while more pos-

terior regions, such as pre-SMA and dACC have been

shown to drive sequential choices to sample information

to guide future choice, vmPFC and the dopaminergic

system mostly seem to encode the value of that informa-

tion but do not necessarily themselves drive behavior. As

these regions are strongly coupled with each other as well,

it is likely that pre-SMA/dACC uses value representations

in vmPFC to drive sampling. This is in line with broader

accounts of the roles of these regions in decision-making

in general: vmPFC is often considered to encode the

value of stimuli [48], while pre-SMA/dACC have fre-

quently been described as driving behavioral shifts

[49�,50,51].

Activity in the intraparietal sulcus (IPS) has also been

found in some paradigms to be related to sampling, to

predict the moment of information gain, or outcome

uncertainty [34��,39��,40��,52�,53]. Both IPS and dACC

are part of a network often identified in decision-making

tasks, responding to outcomes different from the agent’s

predictions that require belief updating and behavioral

shifts [49�,50,54–58]. More specifically, IPS seems partic-

ularly sensitive to surprising changes in the environment,

while dACC activity is more related to the actual updating

of beliefs that leads to behavioral change [49�]. This

suggests this network might use estimates of uncertainty

to drive information sampling for decision-making.

New approaches and challenges to studying
information sampling for decision-making
Behavioral tasks used to investigate information sampling

in decision-making are typically highly simplified, often

with only two available choice options, and the amount of

information that can be sampled to inform choice there-

fore also tends to be small [1�]. This approach has been

crucial in characterizing decision-making mechanisms

from behavioral and neural data [59,60], but it is less

useful to begin to disentangle the many potential drivers

of information sampling, their neural representations and

how they affect choice [1�]. While we have argued that

there is a functional dissociation in frontal cortex between

signals that encode information value and those that

directly drive sampling, our understanding of the differ-

ent factors and their neural representations that lead an

information source to be considered more or less valuable

is poor. To improve it, the tasks we use need to better

reflect the large amount of goals, choice options and

information available in the world.

This is easier said than done. Firstly, human agents do not

just sample information from their environment, they also

use their prior knowledge of the world to make decisions

or learn new tasks [61]. Without a full account of this prior
www.sciencedirect.com
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Figure 3
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Activity in vmPFC is associated with the value of information. (a) BOLD activity in vmPFC is correlated with the anticipatory value of knowing

about upcoming reward ahead of time [40��]. (b) The temporal evolution of this BOLD signal matches the anticipatory utility signal predicted by a

reinforcement learning model that includes a preference for advance reward information [40��,45]. (c) vmPFC is more active during the delivery of

informative cues than uninformative cues [43��].
knowledge, it is difficult to identify what exactly drives

information sampling when faced with a new task. This is

also an important distinction between humans and RL

agents: the latter typically do not enter a new task with

such prior knowledge. Dubey et al. [62��] found that

gradually removing this prior knowledge from human

agents (by modifying the visual information in a video

game environment), drastically reduced performance,

suggesting prior knowledge is a very important factor

in effectively driving sampling to solve new problems.

Another way in which human participants obtain such

prior knowledge is through the instructions given by the

experimenter before starting the task. Human partici-

pants perform much better at a novel task when given

prior information in the form of instructions or by watch-

ing another agent play the game, which could be one of

the main reasons why human agents learn new tasks much

faster than RL agents [63].

The ability to construct and maintain a complex model of

the world is likely crucial to the effective driving of

information sampling for learning and solving new com-

plex problems, and could be the main reason human

agents struggle less with ‘hard exploration’ problems than

their RL counterparts. Ideas derived from RL algorithms
www.sciencedirect.com 
have previously been successfully applied to study

human behavior and neural data [64]. The knowledge

that the performance of RL agents on ‘hard exploration’

problems is dramatically improved by including intrinsic

motivation to seek out new information, could be used in

a similar fashion to better understand human information

sampling. This is unlikely to be a very good model,

though, as human agents probably also use their model

of the world to guide sampling of the information likely to

be most valuable in the task, which is hard to replicate in

an RL algorithm. As such, the presence of such a model in

human agents might severely limit how much we can

learn about human information sampling from studying

RL agents. However, it is not inconceivable that some

elements of a model of the world might effectively be

introduced into AI algorithms, such as intuitive physics

and psychology [65], which could lead to behavior that

approximates that of humans.

Progress along these lines will likely come from two sides:

First, human studies need to be suitably complex in the

stimulus or action domain (e.g. by using many possible

stimulus dimensions, or using video game-like tasks with

many possible actions). This will allow researchers to

harness recent advances in machine learning algorithms
Current Opinion in Behavioral Sciences 2021, 41:63–70
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that specifically target good compressions of information

into a useful state space to enable efficient learning [66].

In doing so, researchers can use tasks and stimuli that are

novel to participants. Second, researchers will likely

benefit from the recent advances in ‘meta-learning’

[67]. Here, more complex tasks allow researchers to

explicitly derive normative (or at least performative)

exploration algorithms directly from data without the

need to define them by hand. For instance, Zheng

et al. [13��] encoded knowledge about likely task struc-

tures in the intrinsic reward signal, showing that this

enabled the agent to behave efficiently in novel environ-

ments. Such work will allow researchers to interrogate

learned curiosity signals and use these insights to design

human experiments or to compare human performance

against a largely assumption-free, yet performative base-

line. Taken together, these tasks would yield predictions

about both ‘what’ to sample (through the learned state

space) and ‘whether’ to sample (through the learned

exploration or intrinsic reward function) and would

recover some of the tractability often lost when introduc-

ing more complexity into task design.

Conclusions
In this review, we have highlighted some recent findings

from a range of behavioral tasks studying different types

of information sampling. In these studies, prefrontal

activity is often related to information sampling, but

there appears to be a functional dissociation between

more posterior regions, such as pre-SMA and dACC, and

the more anterior vmPFC. We argue that pre-SMA/

dACC drives the agent to sample more information

before committing to a decision, while vmPFC activity

encodes the value of upcoming information, but does not

directly affect decisions to sample. The functional con-

nectivity profiles of these regions, with pre-SMA/dACC

being strongly connected to sensorimotor regions and

vmPFC to the reward-sensitive dopaminergic system,

support this hypothesis. What remains unclear is what

the different drivers are of information search and how

they are represented in the brain. In a number of the

findings described here, the information sought by

agents was non-instrumental to the decision at hand,

suggesting information search is often driven by goals

other than those set by the experimenter. Finally, we

propose that to better understand how these information

representations arise, we must develop behavioral tasks

that better reflect the real decision-making problems

humans face. RL may help here, but its use may be

limited as RL agents do not possess the complex repre-

sentation of the world we live in that we use to make

decisions every day.
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